Appendix E: Multiconfigurational methods

This chapter is adapted from Chapters 8 and 9 of the book ‘Multiconfigurational Quantum Chemistry’
by Bjorn Roos et al., published by Wiley.

1 Why multiconfigurational wave functions?

We start with a more detailed analysis of the H, molecule. We use a minimal basis set in this study with
one 1s function on each atom: ¥, = 1sp and g = Isg on the atoms A and B, respectively. From these
atomic functions, we can construct bonding and antibonding spatial molecular orbitals (MO)

o= N(¢a + ¥g) (1)
N (s —1p) (2)
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by taking their symmetric and antisymmetric combinations, respectively. The bonding orbital is in the
RHF model assumed to be doubly occupied leading to a total wave function of the form

|[®o) = [00) = o(r1)o(r2)O20, (3)
which we shall simply denote as (¢)? and where
1
V2

is the singlet (S = 0) antisymmetric spin function for two electrons.

The exact ground state wave function for Hy is at the equilibrium geometry strongly dominated by a
single electronic configuration, (o). The (o) orbital is a bonding orbital with an increased electron density
in the region between the two atoms. The double occupation of this orbital corresponds to the Restricted
Hartree-Fock (RHF) approximation for the Hy molecule. The RHF model leads to a reasonably accurate
description of Hy around the equilibrium geometry: computed bond distance is 0.735 A (Experiment 0.746
A) and the bond energy is 84 kcal/mol (Experiment 109 kcal/mol). It is typical for the HF model that
it is able to describe closed-shell systems around their equilibrium geometry rather well. The correlation
energy is only a small fraction of the total energy, but it is strongly distance dependent, which explains
the error in the computed bond energy (there is no correlation energy at all for two separated hydrogen
atoms).

The bond energy given above has been obtained by subtracting from the RHF energy for Hy the energy
of two separated hydrogen atoms (-627.5 kcal/mol). Suppose instead that we would use the RHF model
to compute the potential curve for the dissociation of Hy, then the first thing to note is that the form of
the MOs (see Eqs. 1, 2) are independent of the internuclear distance. The same form of the wave function

Og0 = (182 — Proe) (4)



(see Eq. 3) is thus obtained also for the separated atoms. Let us expand this wave function as products of
the atomic orbitals ¢5 and g

Do) = N? (Pa(r1)Ya(r2) + a(r1)¥p(r2) + ¥p(r:)Ya(re) + ¢¥p(r:)Ys(rs)) Oop. (5)

We note that this wave function contains the so-called ionic terms, contributions where both electrons are
located at the same atom. These terms are clearly unphysical at large separations, since they correspond
to the dissociation to H" + H™, which has an energy around 320 kcal/mol above H- + H-. It is only
the second and third term in the wave function above that describe correctly the dissociated homolytic
products.

It is a typical feature of the RHF model to include these “ionic structures” in fixed proportions into
the wave function. Consequently, the model cannot in general be used to describe dissociation processes,
in particular not homolytic processes. The potential curve corresponding to this wave function, &y, will
actually end up with an energy around 160 kcal /mol above the true energy at the limit of infinite separation.

Is there a remedy to this problem? We shall look for a formulation in terms of orthogonal molecular
orbitals. We introduce in addition to ®g, the doubly excited Slater determinant (SD)

|®1) = N? (a(r1)va(ra) — a(r)vs(re) — ¢¥s(r)va(rs) + ¥s(r)s(ra)) Oz, (6)

corresponding to the electronic configuration (o*)2.

function as

In terms of &5 and ®;, we can now write our wave

|Unic) = Co|Po) + C1|Py). (7)

This is the multiconfigurational (MC) molecular orbital formulation of the wave function for the chemical
bond in H,, which will correctly describe the entire potential surface. Close to equilibrium Cy ~ 1 and
Ch =~ 0, while at large separations Cy ~ —C;. The quantum chemical description of a chemical bond thus
involves both the bonding and the antibonding orbital. Another way of viewing the multiconfigurational
wave function, Eq. 7, is to note that the two configurations ®; and ®; are degenerate at infinite separation.
Since the interaction between them is different from zero, strong mixing will occur with Cy = £C. It is
clear that the RHF model will not work in cases where more than one electronic configuration have the
same, or nearly the same, energy.

Apart from dissociation, there are several situations, where near degeneracy occurs between different
electronic configurations. A multiconfigurational treatment is then needed in order to obtain a qualitatively
correct description of the electronic structure.

2 Dynamic and static correlation

Electron correlation is customarily divided into dynamic and static (non-dynamic), but there is no strict
definition of these terms. In the context of quantum chemistry calculations, these terms are mainly used
to describe the different ability of different methods to capture significant correlation effects. To take
account of static correlation then means that energetically close or degenerate electronic state are given
an evenhanded description by using several (or many) SD to describe them; the simplest example would
be for an atomic or diatomic radical, where the multiplet structure requires several determinants for its
description. This can be done already by SCF procedures, if a predetermined electronic structure with
more than one determinant is optimized by only adjusting the orbitals, as is done by so-called open-shell
Hartree—Fock that has been extensively used in atomic physics. But in general, a similar situation is at hand
when such electronic structure occur, for example, toward dissociation, “accidental” near degeneracy, open



d-shells, reactions that are Hartree—Fock forbidden or whose description by single-orbital methods require
symmetry breaking, or cause multiple local minima in the orbital optimization when single-determinant
methods are attempted. In photochemistry, such effects are rule rather than exception.

By contrast, the dynamic correlation describes a situation where double (or higher) excitations from
strongly occupied shells to weakly occupied correlating orbitals can adequately describe the stabilizing
effect of allowing electrons to avoid coming too close, when the orbital density in a mean field picture
would allow such close encounters. Dynamic correlation can also be described without correlating orbitals,
for example, adding a correlation potential to the mean field (bare Coulomb or including exchange) using
a density functional, or in some highly accurate methods where the wave functions contain terms that
depend directly on the interelectronic distances.

3 Methods for static correlation

Correlation effects in molecules are normally partitioned into near-degeneracy effects (static correlation)
and dynamic correlation that qualitatively differ in the way they separate the electrons. Static correlation
leads to a large separation in space of the two electrons in a pair, for example, on two different atoms in
a dissociation process. Dynamic correlation, on the other hand, deals with the interaction between two
electrons at short interelectronic distance, the cusp region. It should be emphasized that multiconfigura-
tional SCF (MCSCF) methods deal primarily with the near-degeneracy effects. Other methods are used to
treat dynamical correlation. These include large-scale configuration interaction methods, coupled cluster
methods, and perturbation theory.

There is normally no need for orbital optimization in calculations of dynamical correlation effects, since
the electron density is only weakly affected. This is, however, a rule with several exceptions that we are
not going to mention here.

Multiconfigurational SCF

Let us start by writing down the MCSCF wave function

[U(c,C)) = Y Cilds(c)) (8)

where C; are the expansion coefficients and |®;(c)) the SD with MOs parametrized by a set of coefficients
c. This wave function is then optimized by varying both sets of parameters, i.e. orbital coefficients c and
CI coefficients C until the energy functional

(V(c, C)|H|¥(c, C))

Ble.C) = e, 0)v(e. ©) )

becomes stationary.

Complete active space

In more complex situations than a simple dissociation of an Hy molecule, it may be difficult to make a priori
judgments about the most important electronic configurations to include in the MCSCF wave function.
This problem can be, at least partly, solved by the Complete Active Space (CAS) method. Here, the
problem is reduced to defining a set of active orbitals, which describe the near-degeneracy effects. The



choice of active orbitals requires an insight into the electronic structure, which is often rather obvious, but,
not always. There are many cases where the choice is not at all clear, and several trials have to be made
before the best choice has been found. This is far from black box situation, and the procedure is not easily
automatized.

The CASSCF method is based on a partitioning of the occupied molecular orbitals into subsets, corre-
sponding to how they are used to build the wave function. We define for each symmetry block of MOs the
following subsets: inactive (occupied), active, and external (virtual). The inactive and active orbitals are
occupied in the wave function, while the external orbitals span the rest of the orbital space, defined from
the basis set used to build the MOs. The inactive orbitals are kept doubly occupied in all configurations
that are used to build the CASSCF wave function. The number of electrons occupying these orbitals is
thus twice the number of inactive orbitals. The remaining electrons occupy the active orbitals. We illus-
trate the active spaces for one CAS wave function in Figure 1, which shows a component of a CAS wave
function with two electrons in three orbitals coupled to a singlet. Such a CAS would be denoted CAS(2,3),
following the notation CAS(n,k) where n stands for the number of electrons in k orbitals comprising the
active space.

The CASSCF method is an attempt to generalize the Hartree-Fock model to situations where near
degeneracies occur, while keeping as much of the conceptual simplicity of the RHF approach as possible.
Technically, the CASSCF model is by necessity more complex, since it is based on a MC wave function.
The building blocks are, as in the RHF model, the occupied (inactive and active) orbitals. The number of
electrons is, however, in general less than twice the number of occupied orbitals. The number of electron
configurations generated by the orbital space is therefore larger than unity. The total wave function is
formed as a linear combination of all SDs in the n-electron space that have the inactive orbitals doubly
occupied. It is in this sense “complete” in the configurational space spanned by the active orbitals. The
inactive orbitals represent an “SCF sea” in which the active electrons move. These orbitals have occupation
numbers exactly equal to two, while the occupation numbers of the active orbitals varies between zero and
two. It is obvious that the inactive orbitals should be chosen as the orbitals that are not expected to
contribute to near-degeneracy correlation effects.

External Orbitals

Active Orbitals

Inactive Orbitals

T T

Figure 1: Illustration of the active orbitals for a CAS(2,3)



