
Simulation and Thermodynamics of Adsorption (part 2)

Outline

- 1. Introduction to Molecular Simulations
- 2. Ensembles: Classical and Statistical Thermodynamics
 - micro-canonical ensemble (NVE)
 - canonical ensemble (NVT)
 - grand-canonical ensemble (µVT)
- 3. Monte Carlo Simulations
 - NVT ensemble
 - µVT ensemble
- 4. Calculation of the Chemical Potential
- 5. Some Case Studies



2.1 Introduction

Molecular Simulations

- Molecular dynamics: solve equations of motion
- Monte Carlo: importance sampling
- Calculate thermodynamic and transport properties for a given intermolecular potential

Uses of Molecular Simulations

We need to know the interactions between the atoms!

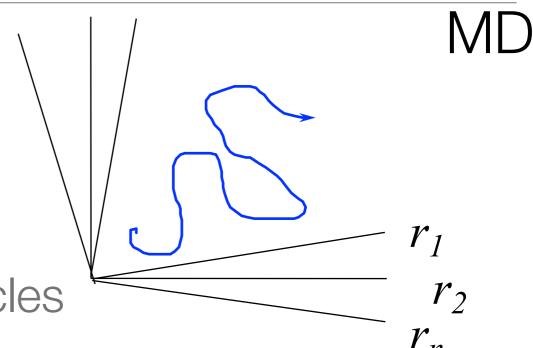
Exact= in the limit of infinitely long simulations the error bars can be made infinitely small

The idea for a given *intermolecular potential* "*exactly*" compute the *thermodynamic* and *transport* properties of the *system*

If one could envision an experimental system of these N particles that interact with the potential.

Pressure
Heat capacity
Heat of adsorption
Structure

Diffusion coefficient Viscosity


. .

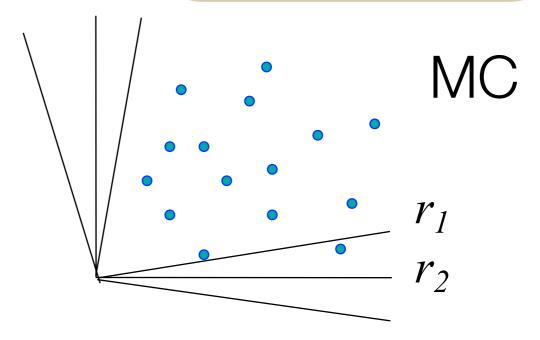
Molecular Dynamics

Theory:

$$\mathbf{F} = m \frac{d^2 \mathbf{r}}{dt^2}$$

- Compute the forces on the particles
- Solve the equations of motion
- Sample after some timesteps

Monte Carlo


Generate a set of configurations with the correct probability

Compute the thermodynamic and transport properties as

averages over all configurations

How to compute these properties from a simulation?

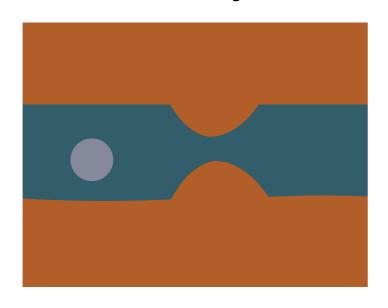
What is the correct probability?
Statistical
Thermodynamics

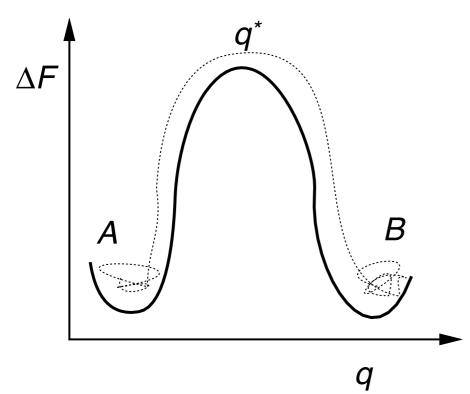
How do we know our simulation is correct?

Molecular Dynamics:

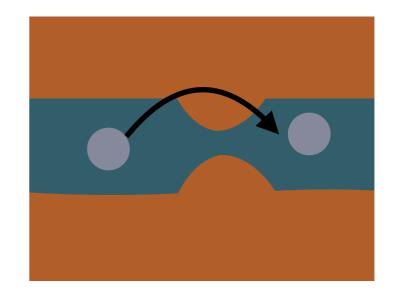
- if the force field is correct we follow the "real" dynamics of our system,
- if we simulate sufficiently long, we can compute the properties of interest

 Statistical

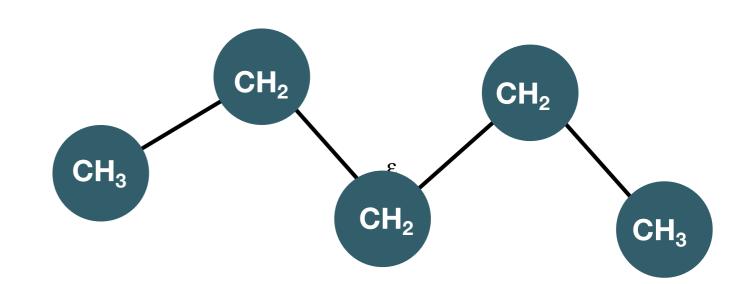

Monte Carlo:


- what is the distribution we need to sample?
- how do we sample this distribution?

Thermodynamics


Monte Carlo versus Molecular Dynamics

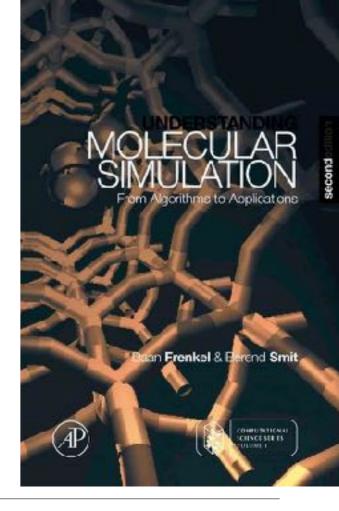
molecular dynamics


Monte Carlo

Intermolecular potential

United-atom model

- Fixed bond length
- Bond-bending
- Torsion



Non-bonded: Lennard-Jones

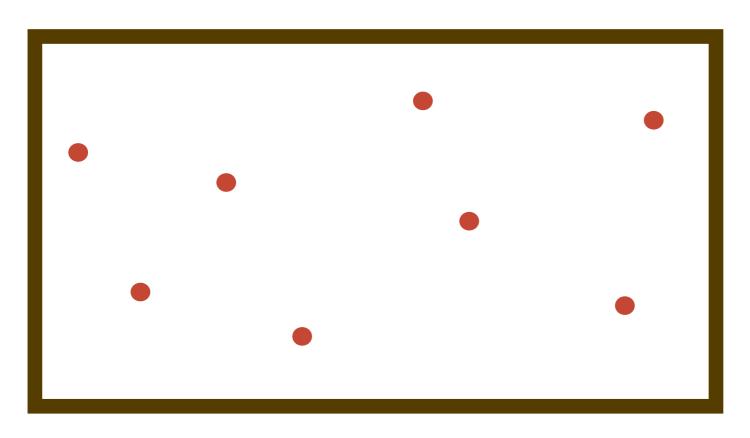
$$u(r) = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r} \right)^{12} - \left(\frac{\sigma_{ij}}{r} \right)^{6} \right]$$

· Point charges: Ions, Dipoles, Quadrupoles

2.2.1 Statistical Thermodynamics: basics

Statistical Thermodynar

Basic Assumption:


thermodynamics is based on laws For an isolated system any microscopic configuration is equally likely

Consequence:

All of statistical thermodynamics and equilibrium thermodynamics

Ideal gas - basic assumption

Let us make an ideal gas

We select:

- (1) N particles,
- (2) Volume V,
- (3) initial velocities
 - + positions

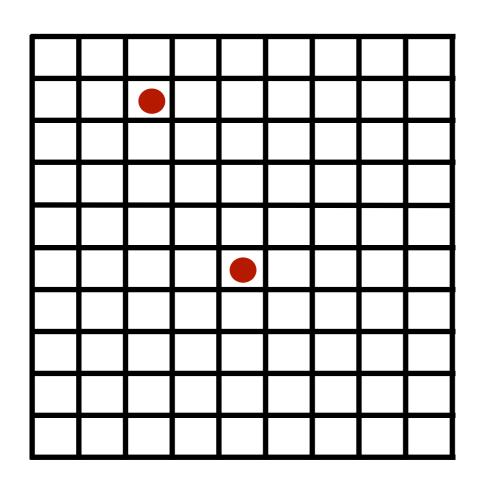
Basic Assumption:

For an isolated system each microscopic configuration is equally likely

What is the probability to find this configuration?

The system has the same energy as the previous one!!

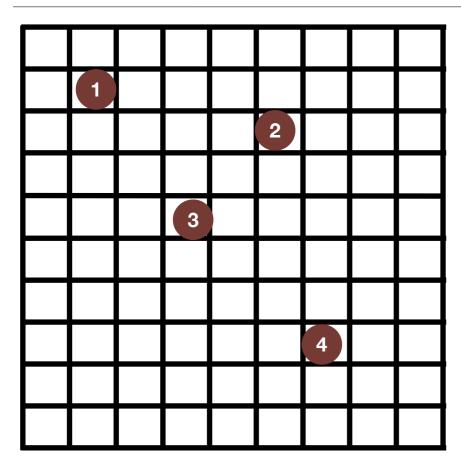
Our basis assumption states that this configuration is equally likely as any other configuration


But having all atoms in the corner of our system seems to be very unlikely

.... and very dangerous

Our basic assumption must be seriously wrong!

Question: How to compute the probabilities of a particular configuration?

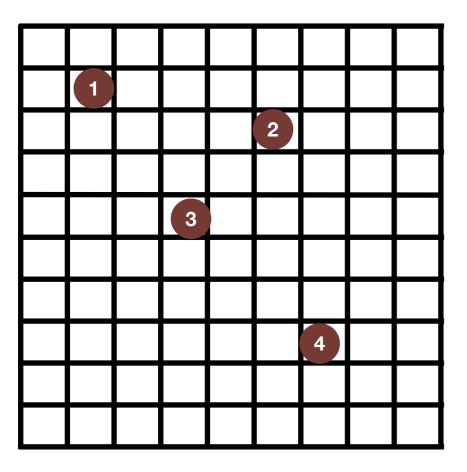

Use a lattice model to make the counting the number of possible confirmations easier

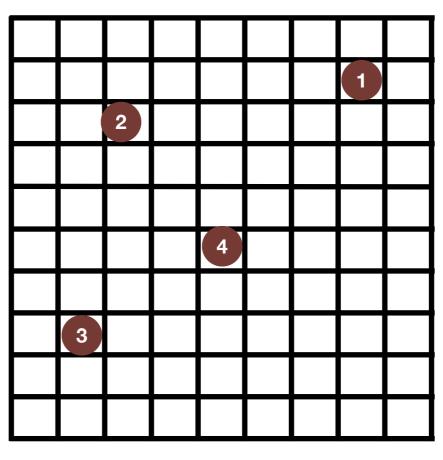
Assumptions:

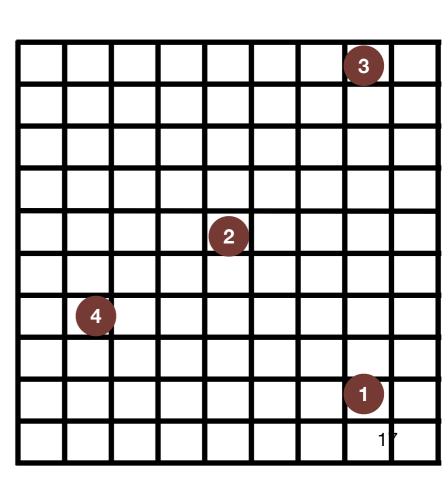
- the position of a molecule is given by the lattice site
- there is no limit in the number of molecules per lattice site

Question: what is the probability of a given configuration?

Basic assumption:

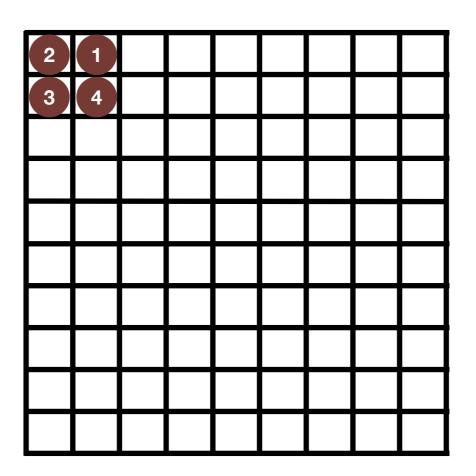

$$P = \frac{\bot}{\text{Total # of configurations}}$$


particle number 1 can be put in *M* positions, number 2 at *M* positions, etc.


For N particle the total number of configurations is: M^N

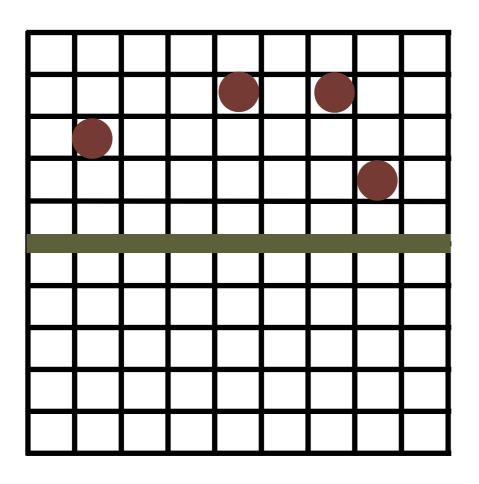
Hence the probability is:
$$P = \frac{1}{M^4}$$

Question: how does the statistics change if the particles are indistinguishable? → Question: What are the probabilities of these configurations?

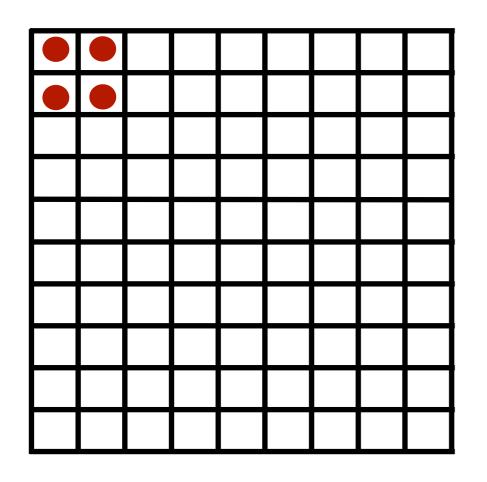


Understanding Molecular Simulation

→ ... and this one?


Is there a real danger that all the oxygen atoms are all in one part of the room?

Are we asking the right question?

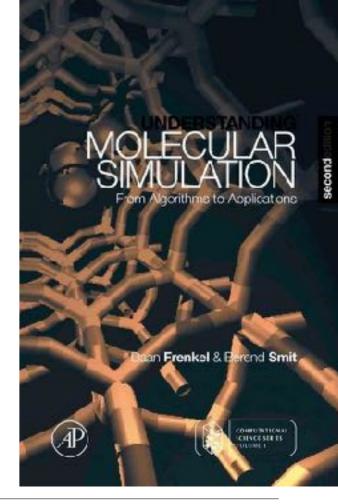

Thermodynamic is about **macroscopic properties**:

These are averages over many configurations

Measure densities: what is the probability that we have all our N gas particle in the upper half?

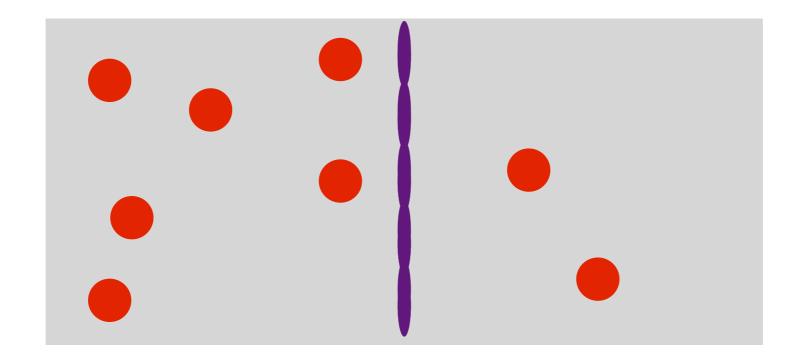
Ν		P(empty)
1		0.5
2		0.5 x 0.5
1.	3	1. 0.5 x 0.5 x 0.5
1000		10-301

What is the probability to find this configuration?


exactly equal as to any other configuration!!!!!

This is reflecting the microscopic reversibility of Newton's equations of motion. A microscopic system has no "sense" of the direction of time

Summary

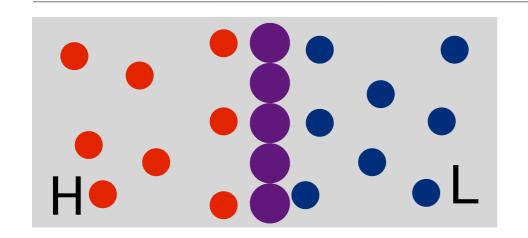

- On a microscopic level all configurations are equally likely
- On a macroscopic level; as the number of particles is extremely large, the probability that we have a fluctuation from the average value is extremely low
- Let us now quantify this

2.2.2 Equilibrium

Question

If all configurations are equally likely what will be then the energy we will observe in the two boxes?

or this one


We have a closed and isolated system

Basic Assumption: every configuration is equally likely

Classical Thermodynamics

- 1st law of Thermodynamics
 - Energy is conserved
- 2nd law of Thermodynamics
 - Heat spontaneously flows from hot to cold (entropy increases)

Equilibrium

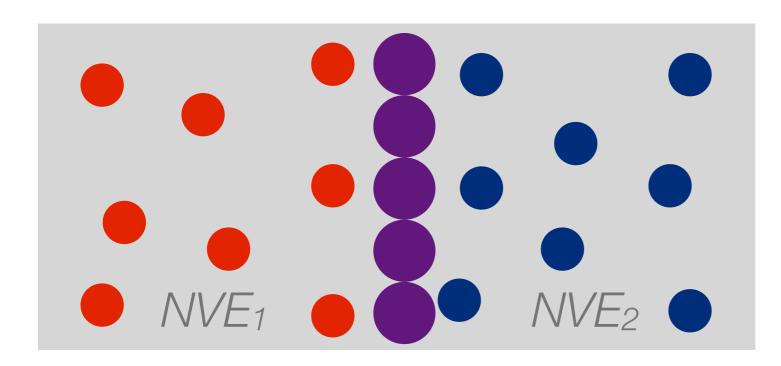
Let us look at the <u>very initial</u> stage

dq is so small that the temperatures of the two systems do not change

For system H
$$dS_{H} = -\frac{dQ}{T_{H}}$$
For system L
$$dS_{L} = \frac{dQ}{T_{L}}$$

Hence, for the total system:

Heat goes from warm to cold: or if dq > 0 then $T_H > T_L$


This gives for the entropy change:

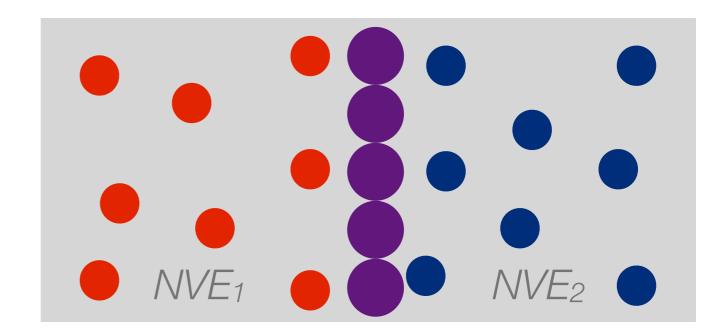
$$dS = dS_L + dS_H = dq \left(\frac{1}{T_L} - \frac{1}{T_H} \right)$$

 $dS \ge 0$

Hence, the entropy increases until the two temperatures are equal

Discussion: equilibrium (2)

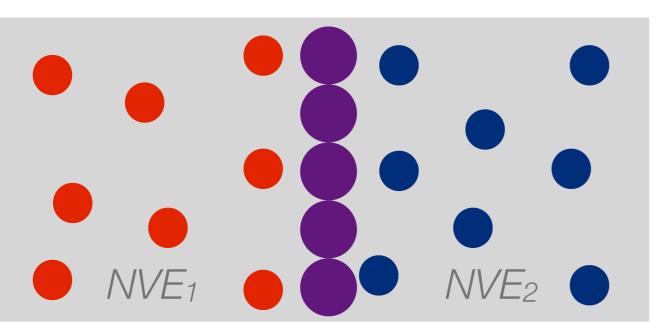
We have a closed and isolated system, but heat can flow between system 1 and 2


Basic Assumption: every configuration is equally likely:

Questions:

- How do we know the system is in equilibrium?
- how does this tell us what will what will be the macroscopic properties (e.g., temperature) of the two systems?

Solution:



All micro states are equally likely!

... but the number of micro states that give an particular density or energy distribution over the 2 systems **are not** ...

Macroscopically we will observe the most likely one

$$P(E_1,E_2)$$

$$N_1(E_1)$$

 $P(E_1, E_2)$ The probability to IIIIu L_1 III volume 1 and E_2 in volume 2 $N_1(E_1)$ The number of configurations that result in an energy E_1 in

volume 1. $E_2 = E - E_1$ The total energy E is constant

$$P(E_{1},E_{2}) = \frac{N_{1}(E_{1})N_{2}(E-E_{1})}{\sum_{E_{1}=0}^{E_{1}=E}N_{1}(E_{1})N_{2}(E-E_{1})} = CN_{1}(E_{1})N_{2}(E-E_{1})$$

Experimentally we will observe the most likeley configuration; which is given by the maximum

We need to find:

$$\frac{dP(E_1, E_2)}{dE_1} = 0$$

Finding:

$$\frac{dP(E_1, E_2)}{dE_1} = 0$$

with:

$$P(E_1, E_2) = CN_1(E_1)N_2(E - E_1)$$

Is equivalent in finding:

$$\frac{d\ln(P(E_1, E_2))}{dE_1} = 0$$

or:

$$\frac{d\ln(N_1(E_1))}{dE_1} + \frac{d\ln(N_2(E - E_1))}{dE_1} = 0$$

with $E_2=E-E_1$

$$\frac{d\ln(N_1(E_1))}{dE_1} - \frac{d\ln(N_2(E - E_1))}{dE_2} = 0$$

The solution of this equation gives the energies in volume 1 and 2 that are most likely, i.e., the largest number of configurations have these energies

Let us define a property (almost S, but not quite):

$$S^* = In(N(E))$$

$$\frac{d\ln(N_1(E_1))}{dE_1} = \frac{d\ln(N_2(E - E_1))}{dE_2}$$

or

$$\left(\frac{\partial S_{1}^{*}}{\partial E_{1}}\right)_{N_{1},V_{1}} = \left(\frac{\partial S_{2}^{*}}{\partial E_{2}}\right)_{N_{2},V_{2}}$$

And for the total system:

$$S^* = S_1^* + S_2^*$$

For a system at constant energy, volume and number of particles S* increases until it has reached its maximum value at equilibrium

What is this magic property S*?

Defined a property S* (that is almost S):

$$S^*(E_1, E - E_1) = In(N(E_1, E - E_1))$$

Question 1: Why is maximising S* the same as maximising N?

Answer: The logarithm is a monotonically increasing function.

Question 2: Why is the logarithm a convenient function?

Answer: makes S* additive! Leads to extensivity.

Question 3: Why is S* not quite entropy?

Answer: Units! The logarithm is just a unitless quantity.

$$S = k_{B}S^{*} = k_{B} \ln(N(E))$$

For a partitioning of E between 1 and 2, the number of configuration is maximized when:

$$\left(\frac{\partial S_{1}^{*}}{\partial E_{1}}\right)_{N_{1},V_{1}} = \left(\frac{\partial S_{2}^{*}}{\partial E_{2}}\right)_{N_{2},V_{2}}$$

What do these partial derivatives relate to?

$$dE = TdS - pdV + \sum_{i=1}^{i=M} \mu_i dN_i$$

Temperature

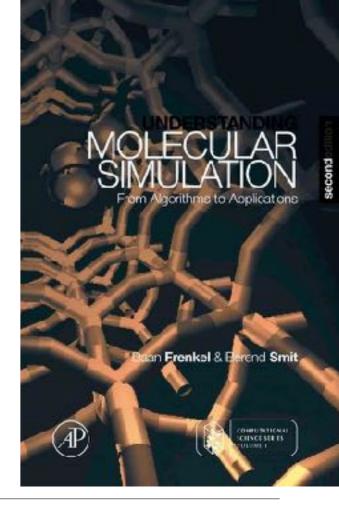
$$T = \left(\frac{\partial E}{\partial S}\right)_{N_i, V}$$
 or $\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{N_i, V}$

Thermal equilibrium → equal temperature of system 1 and 2!

$$S = k_B S^* = k_B \ln(N(E))$$

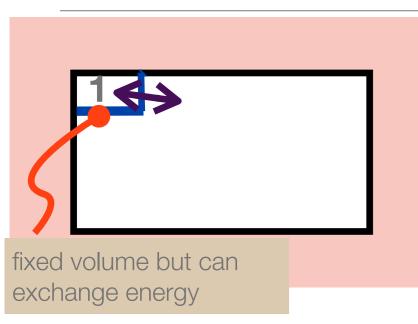
Question: How large is N(E) for a glass of water?

How to estimate N(E)


- Number of molecules of the order 10²³
- Make a grid of 10⁶ cells (100x100x100)

$$N(E) \gg \left(10^6\right)^{10^{23}}$$

Summary:


- For macroscopic systems N(E) is super-astronomically large
- Macroscopic deviations from the second law of thermodynamics are not forbidden, but they are extremely unlikely.

2.3.1 NVT ensemble - Statistical Thermo

Canonical ensemble: classical thermodynamics

Our entire system is isolated (NVE), but our subsystems (box 1 and bath) can exchange energy

First law
$$dU = TdS - pdV$$

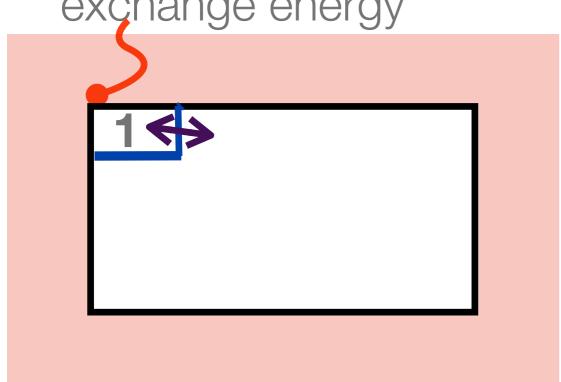
Second law
$$dS \ge 0$$

Box 1: constant volume and temperature

1st law:
$$dU = dU_1 + dU_p = 0$$
 or

$$dU_1 = -dU_b$$

The bath is so large that the heat flow does not influence the temperature of the bath + the process is reversible


2nd law:
$$dS = dS_1 + dS_b \ge 0$$
 or $dS_1 + dS_b = dS_1 + \frac{dU_b}{T} = dS_1 - \frac{dU_1}{T} \ge 0$

Giving:
$$TdS_1 - dU_1 \ge 0$$

we have a criteria that only depends on box 1

36

fixed volume but can exchange energy

Total system is isolated and the volume is constant

Box 1: constant volume and temperature

2nd law: $TdS_1 - dU_1 \ge 0$

 $d(U_1 - TS_1) \le 0$

Let us define the Helmholtz free energy (F): $F \equiv U - TS$

For box 1 we can write: $dF_1 \le 0$

Hence, for a system at constant temperature and volume the Helmholtz free energy decreases and takes its minimum value at equilibrium

Canonical ensemble: statistical mechanics

Consider a small system that can exchange energy with a big reservoir =1/k_BT

$$\ln\Omega(E_1, E - E_1) = \ln\Omega(E) - \left(\frac{\partial \ln\Omega}{\partial E}\right) E_1 + \cdots$$

If the reservoir is very big we can ignore the higher order terms:

$$\ln \left| \frac{\Omega(E_1, E - E_1)}{\Omega(E)} \right| = -\frac{E_1}{k_B T}$$

Hence, the probability to find E_1 :

$$P(E_1) = \frac{\Omega(E_1, E - E_1)}{\sum_{i} \Omega(E_i, E - E_i)} = \frac{\Omega(E_1, E - E_1)/\Omega(E)}{\sum_{i} \Omega(E_i, E - E_i)/\Omega(E)} = C\frac{\Omega(E_1, E - E_1)}{\Omega(E)}$$

$$P(E_1) \propto \exp\left[-\frac{E_1}{k_B T}\right] \propto \exp\left[-\beta E_1\right]$$

Partition function:
$$q = \sum_{n=1}^{\infty} e^{-\frac{E_n}{k_B T}} = \int_0^{\infty} e^{-\frac{E_n}{k_B T}} dn$$

we assume that the potential energy does not depend on the velocity

Hamiltonian:

$$H = U_{kin} + U_{pot} = \sum_{i=i}^{N} \frac{p_i^2}{2m} + U_{pot}(r^N)$$

one atom:

$$Z_{1,V,T} = C \iint e^{-\frac{H}{k_B T}} dp^3 dr^3 = C \int e^{-\frac{p^2}{2mk_B T}} dp^3 \int e^{-\frac{U_{pot}(r)}{k_B T}} dr^3$$

one ideal gas atom: $U_p(r)=0$

$$Z_{1,V,T}^{\text{ideal gas}} = C \int e^{-\frac{p^2}{2mk_BT}} dp^3 \int 1 dr^3 = CV \int e^{-\frac{p^2}{2mk_BT}} dp^3 = CV \left(2\pi m k_BT\right)^{\frac{3}{2}}$$

Compare:

$$q_{\text{translational}} = \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2} V = \frac{V}{\Lambda^3}$$

if we define $C=1/h^3$

$$Z_{1,V,T}^{\text{ideal gas}} = CV \left(2\pi m k_B T\right)^{\frac{3}{2}} = \frac{V}{\Lambda^3}$$

wrong: particles are indistinguishable

N gas molecules:

$$Z_{N,V,T} = \frac{1}{h^{3N}} \iint e^{-\frac{H}{k_B T}} dp^{3N} dr^{3N}$$

if we swap the position of two particles we do not have a new configuration!

$$Z_{N,V,T} = \frac{1}{h^{3N}N!} \iint e^{-\frac{H}{k_B T}} dp^{3N} dr^{3N}$$

Configurational part of the partition function:

$$Q_{N,V,T} = \frac{1}{\Lambda^{3N} N!} \int e^{-\frac{U(r)}{k_B T}} dr^{3N}$$

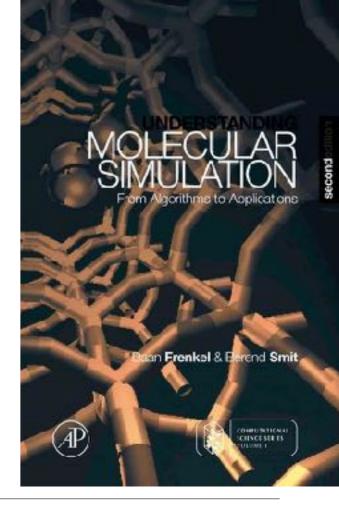
Summary: Canonical ensemble (N,V,T)

Partition function:

$$Q_{N,V,T} = \frac{1}{\Lambda^{3N} N!} \int e^{-\frac{U(r)}{k_B T}} dr^{3N}$$

Probability to find a particular configuration:

$$P(R^N) \propto e^{-\frac{U(R^N)}{k_BT}}$$


Ensemble average:

$$\left\langle A\right\rangle_{N,V,T} = \frac{\frac{1}{\Lambda^{3N}N!}\int A(r)e^{-\frac{U(r)}{k_BT}}dr^{3N}}{Q_{N,V,T}} = \frac{\int A(r)e^{-\beta U(r)}dr^{3N}}{\int e^{-\beta U(r)}dr^{3N}}$$

Free energy:

$$eta F = - \ln Q_{_{NVT}}$$

2.3.2 NVT ensemble - Molecular Simulation

Canonical ensemble (N,V,T)

Distribution we need to sample:

$$P(r^N) \propto e^{-\beta U(r^N)}$$

Moves:

- select a particle at random
- give this particle a random displacement

Acceptance rule: detailed balance

Algorithm 1 (Basic Metropolis Algorithm)

```
program mc

do icycl=1,ncycl
    call mcmove
    if (mod(icycl,nsamp).eq.0)

+ call sample
    enddo
    end

basic Metropolis algorithm

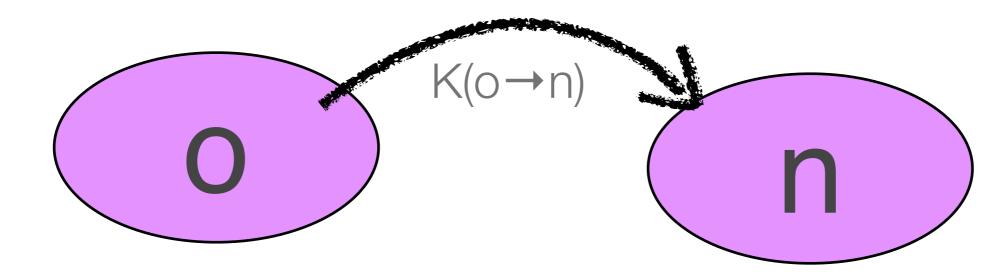
perform ncycl MC cycles
displace a particle
sample sample averages
```

Comments to this algorithm:

- 1. Subroutine mcmove attempts to displace a randomly selected particle (see Algorithm 2).
- 2. Subroutine sample samples quantities every nsampth cycle.

Algorithm 2 (Attempt to Displace a Particle)

```
subroutine memove

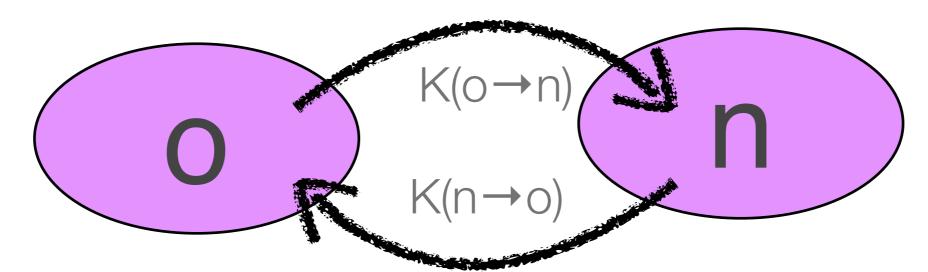

o=int(ranf()*npart)+1
call ener(x(o),eno)
xn=x(o)+(ranf()-0.5)*delx
call ener(xn,enn)
if (ranf().lt.exp(-beta
+ *(enn-eno)) x(o)=xn
return
end

select a particle at random
energy old configuration
give particle random displacement
energy new configuration
acceptance rule (2.2.1)
accepted: replace x(o) by xn
```

Comments to this algorithm:

- 1. Subroutine ener calculates the energy of a particle at the given position.
- 2. Note that, if a configuration is rejected, the old configuration is retained.
- 3. The ranf () is a random number uniform in [0, 1].

Detailed Balance



 $K(o \rightarrow n)$: total number of systems in our ensemble that move $o \rightarrow n$

$$K(o \rightarrow n) = N(o) \times \alpha(o \rightarrow n) \times acc(o \rightarrow n)$$

- N(o): total number of systems in our ensemble in state o
- $a(o \rightarrow n)$: a priori probability to generate a move $o \rightarrow n$
- $acc(o \rightarrow n)$: probability to accept the move $o \rightarrow n$

Acceptance rule: Detailed Balance

Condition of detailed balance:

$$K(o \to n) = K(n \to o)$$

$$K(o \to n) = N(o) \times \alpha(o \to n) \times acc(o \to n)$$

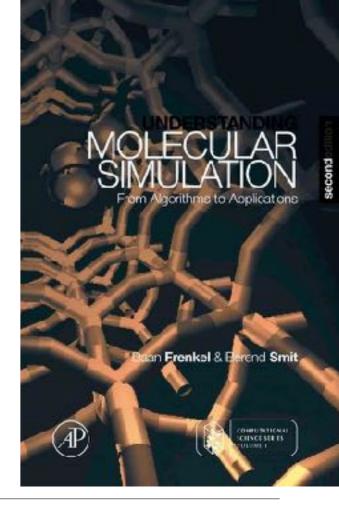
$$K(n \to o) = N(n) \times \alpha(n \to o) \times acc(n \to o)$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n) \times \alpha(n \to o)}{N(o) \times \alpha(o \to n)}$$

Acceptance rule

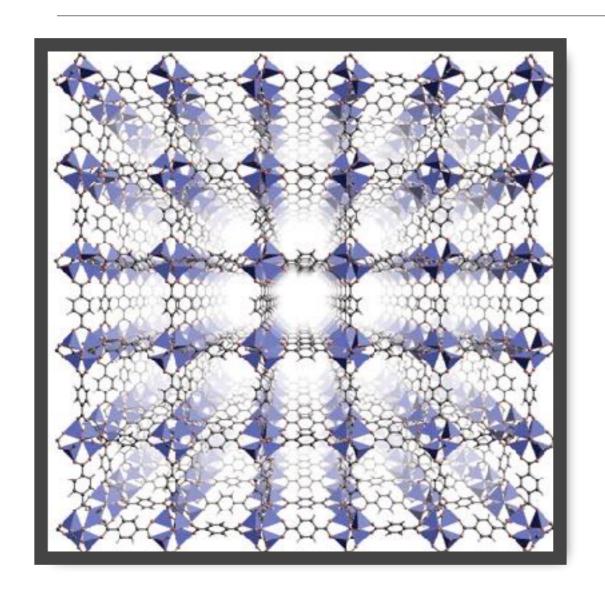
Distribution we need to sample:

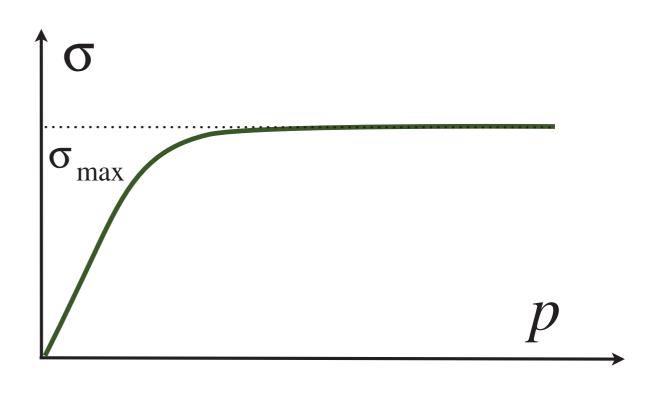
$$P(n) \propto e^{-\beta U(n)}$$


Moves:

• a priori probability is independent of the configuration: $\alpha(o \rightarrow n) = \alpha(n \rightarrow o)$

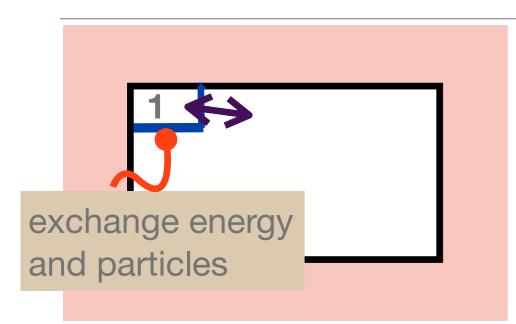
$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n) \times \alpha(n \to o)}{N(o) \times \alpha(o \to n)} = \frac{N(n)}{N(o)}$$


$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = e^{-\beta \left[U(n) - U(o)\right]}$$



2.3.3 µVT ensemble - Thermodynamics

Thermodynamics of adsorption



Metal Organic Framework

What are the appropriate thermodynamic variables?

Constant: T and µ

Total system is isolated and the volume is constant

First law
$$dU = TdS - pdV + \mu dN = 0$$

Second law
$$dS \ge 0$$

Box 1: constant chemical potential and temperature

1st law:
$$dU_1 + dU_b = 0$$
 or $dU_1 = -dU_b$
 $dN_1 + dN_b = 0$ or $dN_1 = -dN_b$

The bath is very large and the small changes do not change μ or T; in addition the process is reversible

2nd law:
$$dS = dS_1 + dS_b = dS_1 + \left[\frac{dU_b}{T} - \mu \frac{dN_b}{T}\right] \ge 0$$

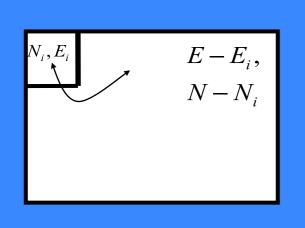
$$dS = dS_1 + dS_b = dS_1 + \left[\frac{dU_b}{T} - \mu \frac{dN_b}{T} \right] \ge 0$$

We can express the changes of the bath in terms of properties of the system

$$dS_{1} + \left[-\frac{dU_{1}}{T} + \mu \frac{dN_{1}}{T} \right] \ge 0$$

$$d\left(TS_{1} - U_{1} + \mu N_{1} \right) \ge 0$$

$$d\left(U_{1} - TS_{1} - \mu N_{1} \right) \le 0$$


For the Gibbs free energy we can write:

$$G \equiv U - TS + pV$$

$$G = \mu N$$
 or $-pV = U - TS - \mu N$

Giving:
$$d(-pV) \le 0$$
 or $d(pV) \ge 0$

Hence, for a system at constant temperature and chemical potential pV increases and takes its maximum value at equilibrium

μ, V, T ensemble

Consider a small system that can exchange particles and energy with a big reservoir

$$\ln\Omega(N-N_1,E-E_1) = \ln\Omega(N,E) - \left(\frac{\partial \ln\Omega}{\partial E}\right)E_1 - \left(\frac{\partial \ln\Omega}{\partial N}\right)N_1 + \cdots$$

The terms in the expansion follow from the connection with Thermodynamics: $S = k_B \ln \Omega$

$$dS = \frac{1}{T}dU + \frac{p}{T}dV - \frac{\mu}{T}dN$$

Giving:

$$\left(\frac{\partial S}{\partial U}\right)_{V,N} = \frac{1}{T}$$
 and $\left(\frac{\partial S}{\partial N}\right)_{V,T} = -\frac{\mu}{T}$

$$\ln\Omega(N-N_1,E-E_1) = \ln\Omega(N,E) - \left(\frac{\partial \ln\Omega}{\partial E}\right)E_1 - \left(\frac{\partial \ln\Omega}{\partial N}\right)N_1 + \cdots$$

$$\ln\Omega(N-N_{1},E-E_{1}) = \ln\Omega(N,E) - \frac{E_{1}}{k_{B}T} + \frac{\mu N_{1}}{k_{B}T} + \cdots$$

$$\ln \left[\frac{\Omega \left(N - N_{_{1}}, E - E_{_{1}} \right)}{\Omega \left(N, E \right)} \right] = -\frac{1}{k_{_{B}}T} \left(E_{_{1}} - \mu N_{_{1}} \right)$$

Hence, the probability to find E_1, N_1 :

$$P(N_1, E_1) = \frac{\Omega(N - N_1, E - E_1)}{\sum_{i,j} \Omega(N - N_i, E - E_j)} = \frac{\Omega(N - N_1, E - E_1)/\Omega(N, E)}{\sum_{i,j} \Omega(N - N_i, E - E_j)/\Omega(N, E)} = Ce^{-\frac{1}{k_B T}(E_1 - \mu N_1)}$$

$$P(N,E) \propto Ce^{-\beta(E-\mu N)}$$

In the classical limit, the partition function becomes

$$Q(\mu, V, T) = \sum_{N=0}^{\infty} \frac{e^{\beta \mu N}}{\Lambda^{3N} N!} \int dr^{N} e^{-\beta U(r^{N})}$$

The probability to find a particular configuration:

$$P(N,r^N) \propto e^{-\beta \left[U(r^N) - \mu N\right]}$$

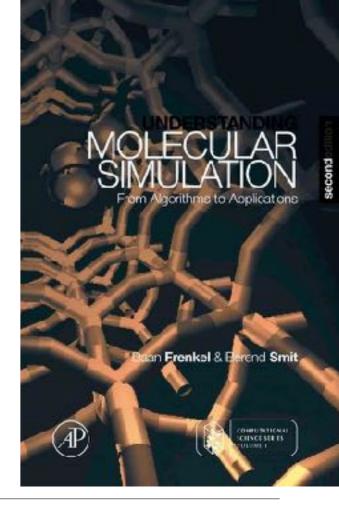
Statistical thermodynamics: μ , V, T ensemble

The partition function:

$$Q(\mu, V, T) = \sum_{N=0}^{\infty} \frac{e^{\beta \mu N}}{\Lambda^{3N} N!} \int dr^{N} e^{-\beta U(r^{N})}$$

It is convenient to introduce scale coordinates:

$$s \equiv \frac{r}{L}$$


which gives

$$Q(\mu, V, T) = \sum_{N=0}^{\infty} \frac{V^N e^{\beta \mu N}}{\Lambda^{3N} N!} \int ds^N e^{-\beta U(r^N)}$$

The probability to find a particular configuration:

$$P(N,r^N) \propto \frac{V^N}{N!} e^{-\beta \left[U(r^N) - \mu N\right]}$$

2.3.4 µVT ensemble - Molecular Simulation

Grand-canonical ensemble (µ,,T)

Distribution we need to sample:

$$P(N,r^N) \propto \frac{V^N}{N!} e^{-\beta \left[U(r^N) - \mu N\right]}$$

Moves:

- select a particle at random: give this particle a random displacement
- add/remove a particle

Acceptance rule: detailed balance

Acceptance rules (µ,V,T)

Distribution we need to sample:

$$P(N,r^N) \propto \frac{V^N}{N!} e^{-\beta \left[U(r^N) - \mu N\right]}$$

Detailed balance:

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n)}{N(o)}$$

Move: displacement of a randomly selected particle

$$P(n) \propto \frac{V^{N}}{N!} e^{-\beta \left[U(n) - \mu N\right]}$$

$$P(o) \propto \frac{V^{N}}{N!} e^{-\beta \left[U(o) - \mu N\right]}$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\frac{V^{N}}{N!} e^{-\beta \left[U(o) - \mu N\right]}}{\frac{V^{N}}{N!} e^{-\beta \left[U(o) - \mu N\right]}} = e^{-\beta \left[U(n) - U(o)\right]}$$

Acceptance rules (µ,V,T)

Distribution we need to sample:

$$P(N,r^N) \propto \frac{V^N}{N!} e^{-\beta \left[U(r^N) - \mu N\right]}$$

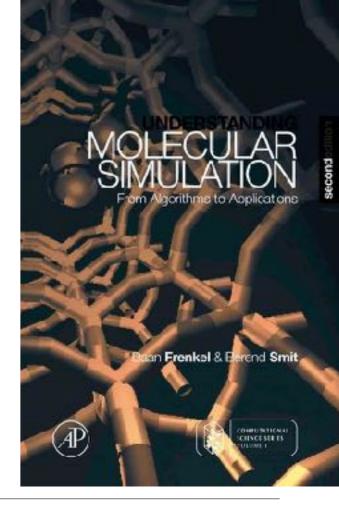
 $\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{N(n)}{N(o)}$

Detailed balance:

Move: add or remove a particle

CIE
$$P(n) \propto \frac{V^{N_n}}{N!} e^{-\beta \left[U(n) - \mu N_n\right]} \qquad P(o) \propto \frac{V^{N_o}}{N!} e^{-\beta \left[U(o) - \mu N_o\right]}$$

$$\frac{\operatorname{acc}(o \to n)}{\operatorname{acc}(n \to o)} = \frac{\frac{V^{N_n}}{N_n!} e^{-\beta \left[U(n) - \mu N_n\right]}}{\frac{V^{N_o}}{N_o!} e^{-\beta \left[U(o) - \mu N_n\right]}} = \frac{N_n!}{N_o!} V^{(N_n - N_o)} e^{-\beta \left[U(n) - U(o) - \mu (N_n - N_o)\right]}$$


Algorithm 12 (Basic Grand-Canonical Ensemble Simulation)

```
basic µVT ensemble
PROGRAM mc_gc
                                      simulation
                                      perform ncycl MC cycles
do icycl=1,ncycl
 ran=int(ranf()*(npav+nexc))+1
 if (ran.le.npart) then
   call mcmove
                                      displace a particle
 else
                                      exchange a particle
   call mcexc
                                      with the reservoir
 endif
 if (mod(icycl,nsamp).eq.0)
   call sample
                                      sample averages
enddo
end
```

Algorithm 13 (Attempt to Exchange a Particle with a Reservoir)

```
attempt to exchange a particle
 SUBROUTINE mcexc
                                    with a reservoir
                                    decide to remove or add a particle
 if (ranf().lt.0.5) then
   if (npart.eq.0) return
                                    test whether there is a particle
                                    select a particle to be removed
   o=int(npart*ranf())+1
   call ener(x(o),eno)
                                    energy particle o
                                    acceptance rule (5.6.9)
   arg=npart*exp(beta*eno)
        /(zz*vol)
+
   if (ranf().lt.arg) then
                                    accepted: remove particle o
     x(o)=x(npart)
     npart=npart-1
   endif
 else
                                    new particle at a random position
   xn=ranf()*box
                                    energy new particle
   call ener(xn,enn)
                                    acceptance rule (5.6.8)
   arg=zz*vol*exp(-beta*enn)
        /(npart+1)
   if (ranf().lt.arg) then
     x(npart+1)=xn
                                    accepted: add new particle
     npart=npart+1
   endif
 endif
 return
 end
```


2.4 Chemical potential: Widom's test particle method

Chemical potential: Widom's test particle

We start with the partition function of the NVT ensemble

$$Q_{NVT} = \frac{1}{\Lambda^{3N} N!} \int d\mathbf{r}^{N} \exp\left[-\beta U(\mathbf{r}^{N})\right]$$

It is convenient to have the volume dependence explicitly; scaled coordinates: s=r/L

$$Q_{NVT} = \frac{V^{N}}{\Lambda^{3N} N!} \int ds^{N} \exp \left[-\beta U(s^{N}; L) \right]$$

For the free energy we have

$$\beta F = -\ln\left(Q_{NVT}\right) = -\ln\left(\frac{V^{N}}{\Lambda^{3N}N!}\right) - \ln\left(\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]\right)$$

Stirling's formula and p=N/V

$$= -N \ln \left(\frac{1}{\Lambda^3 \rho} \right) - \ln \left(\int ds^N \exp \left[-\beta U(s^N; L) \right] \right)$$

For the free energy we have obtained βF

$$\beta F = -\ln(Q_{NVT})$$

$$= -N \ln\left(\frac{1}{\Lambda^{3}\rho}\right) - \ln\left(\int ds^{N} \exp\left[-\beta U(s^{N}; L)\right]\right)$$

It is convenient to split the free energy into an ideal gas contribution and the excess:

$$\beta F = \beta F^{IG} + \beta F^{ex}$$

The we can also do for the chemical potential

$$\mu \equiv \left(\frac{\partial F}{\partial N}\right)_{V,T}$$

$$\beta\mu = \beta\mu^{IG} + \beta\mu^{ex}$$

Giving

$$\mu^{IG} \equiv \left(\frac{\partial F^{IG}}{\partial N}\right)_{V,T}$$

$$\mu^{ex} \equiv \left(\frac{\partial F^{ex}}{\partial N}\right)_{V,T}$$

From the free energy $\beta \mu = \left(\frac{\partial \beta F}{\partial N}\right)_{N}$

$$\beta\mu = \frac{\beta F(N+1) - \beta F(N)}{N+1-N} = -\ln \frac{Q(N+1)}{Q(N)}$$

$$= -\ln \left(\frac{\frac{V^{N+1}}{\Lambda^{3N+3}(N+1)!}}{\frac{V^{N}}{\Lambda^{3N}N!}}\right) - \ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]}\right)$$
poart

Ideal gas part

$$=-\ln\left(\frac{V}{\Lambda^{3}(N+1)}\right)-\ln\left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]}\right)$$

This gives us:

$$\beta \mu = \beta \mu^{IG} + \beta \mu^{ex}$$

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]} \right)$$

For the excess chemical potential we have

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N+1} \exp\left[-\beta U\left(s^{N+1};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]} \right)$$

For the interactions of particles N+1 we can write

$$U(s^{N+1};L) = \Delta U^{+} + U(s^{N};L)$$

which gives

$$\beta \mu^{ex} = -\ln \left(\frac{\int ds^{N} \int ds_{N+1} \exp \left[-\beta \left(\Delta U^{+} + U(s^{N}; L) \right) \right]}{\int ds^{N} \exp \left[-\beta U(s^{N}; L) \right]} \right)$$

$$=-\ln\left(\frac{\int ds_{N+1} \int ds^{N} \left\{ \exp\left[-\beta \Delta U^{+}\right] \right\} \exp\left[-\beta U\left(s^{N};L\right)\right]}{\int ds^{N} \exp\left[-\beta U\left(s^{N};L\right)\right]}\right)$$

$$=-\ln\left(\int ds_{N+1}\left\langle \exp\left[-\beta\Delta U^{+}\right]\right\rangle_{NVT}\right)$$

Algorithm 16 (Widom Test Particle Insertion)

```
subroutine Widom

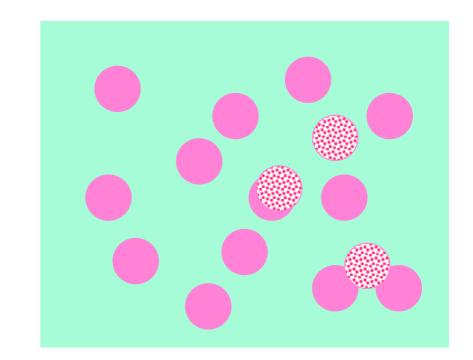
xtest=box*ranf()
call ener(xtest,entest)
wtest=wtest
+ +exp(-beta*entest)
return
end
```

excess chemical potential via the addition of test particles generate a random position determine energy update Boltzmann factor in (7.2.5)

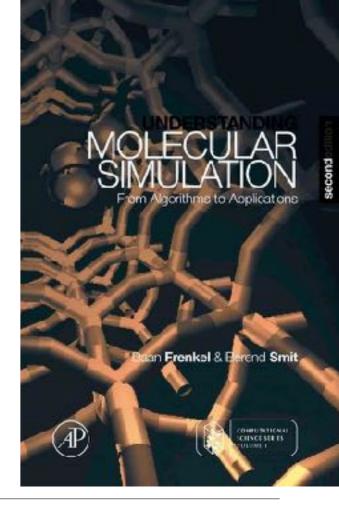
Hard spheres

For the chemical potential we have

$$\beta \mu^{ex} = -\ln \left(\int ds_{N+1} \left\langle \exp \left[-\beta \Delta U^{+} \right] \right\rangle_{NVT} \right)$$

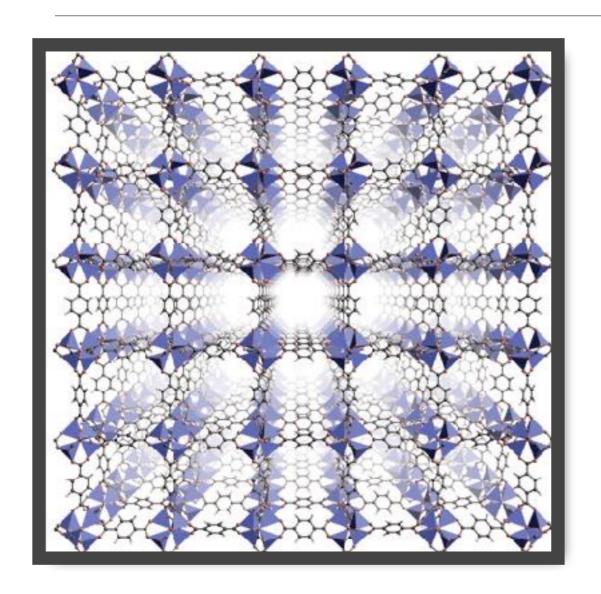

The hard sphere potential:

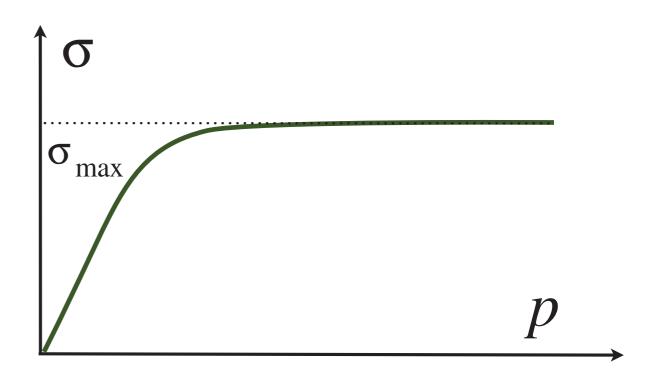
$$U(r) = \begin{cases} \infty & r \le \sigma \\ 0 & r > \sigma \end{cases}$$


If we insert a particle, we have

$$\left\langle \exp\left[-\beta\Delta U^{+}\right]\right\rangle = \begin{cases} 0 & \text{if overlap} \\ 1 & \text{no overlap} \end{cases}$$

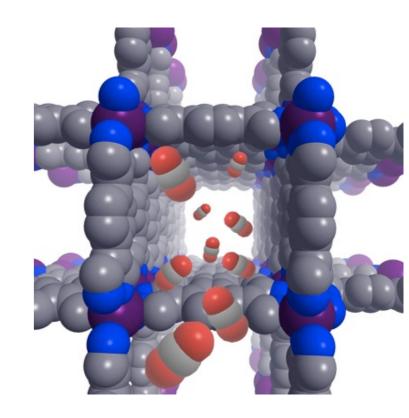
Probability to insert a test particle!

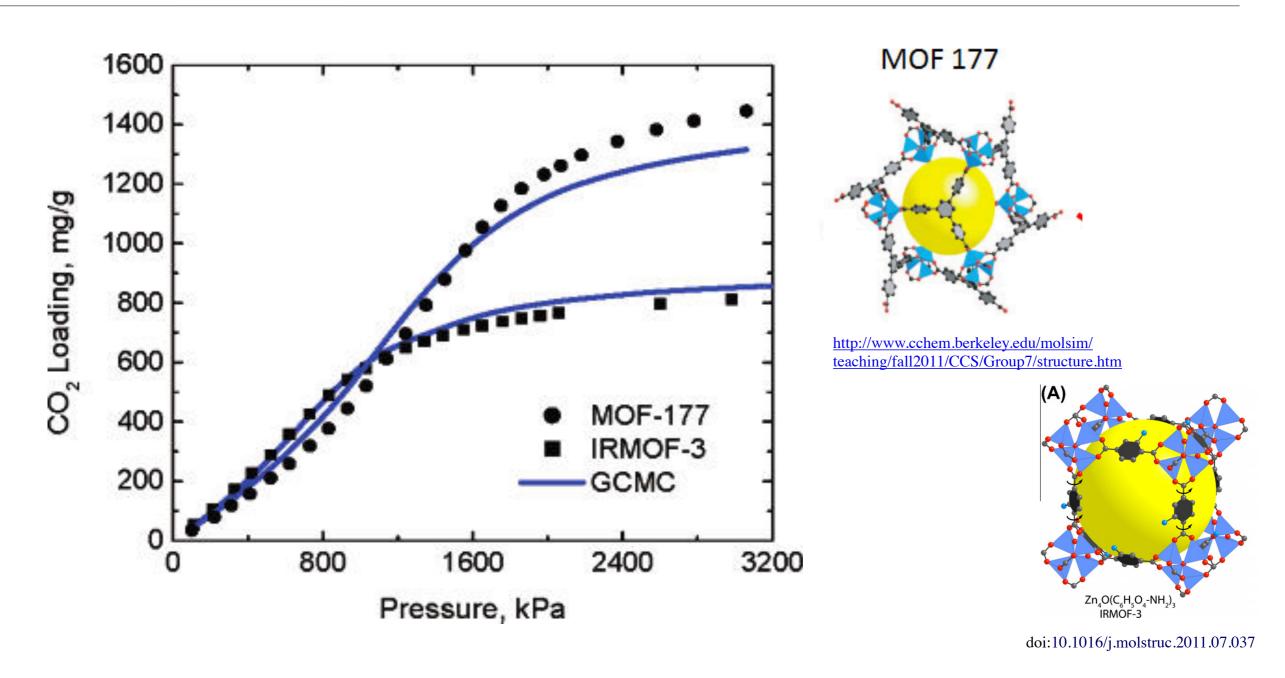




2.5.1 MOFs with open metal sites

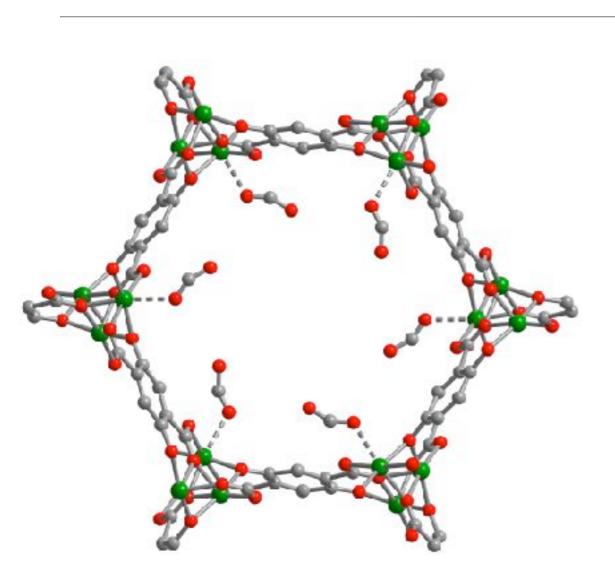
Simulating a CO₂ isotherm of a MOF



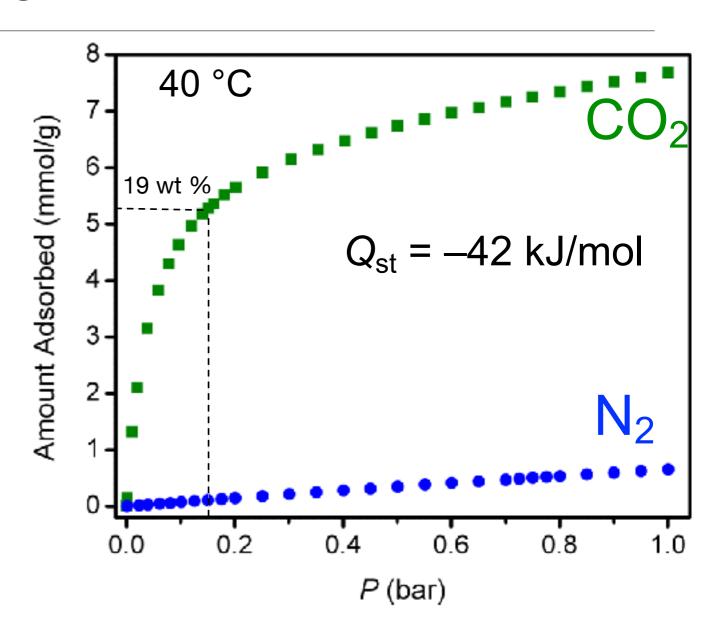

Metal Organic Framework

Prediction the adsorption isotherms

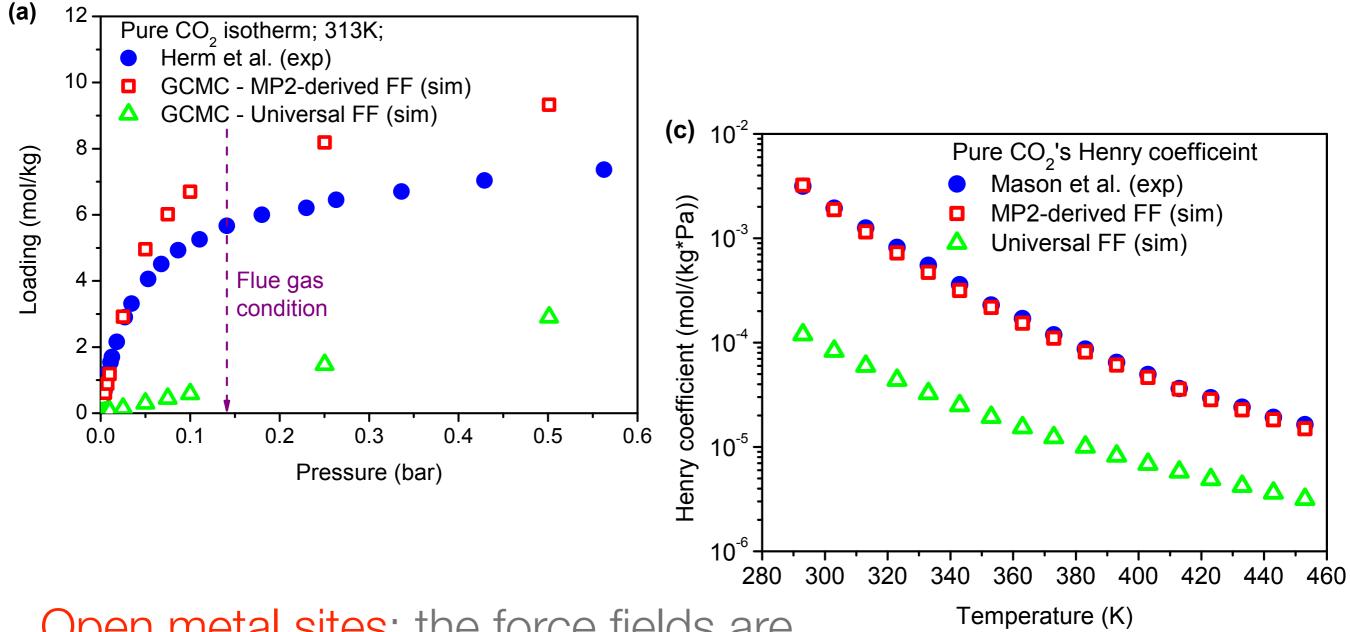
- MOF: crystal structure:
 - From the experimental X-ray structure
 - Clean the structure:
 - remove the solvent molecules
 - partial occupancy
 - put the H-atoms at the right position
 - Optimize the structure
 - Obtain the charges on the atoms of the MOF
- Assume the crystal is rigid
- Select a model for the guest-guest interactions (Trappe)
- Select a model for the guest-host interactions (universal force fields like UFF or Dreading)



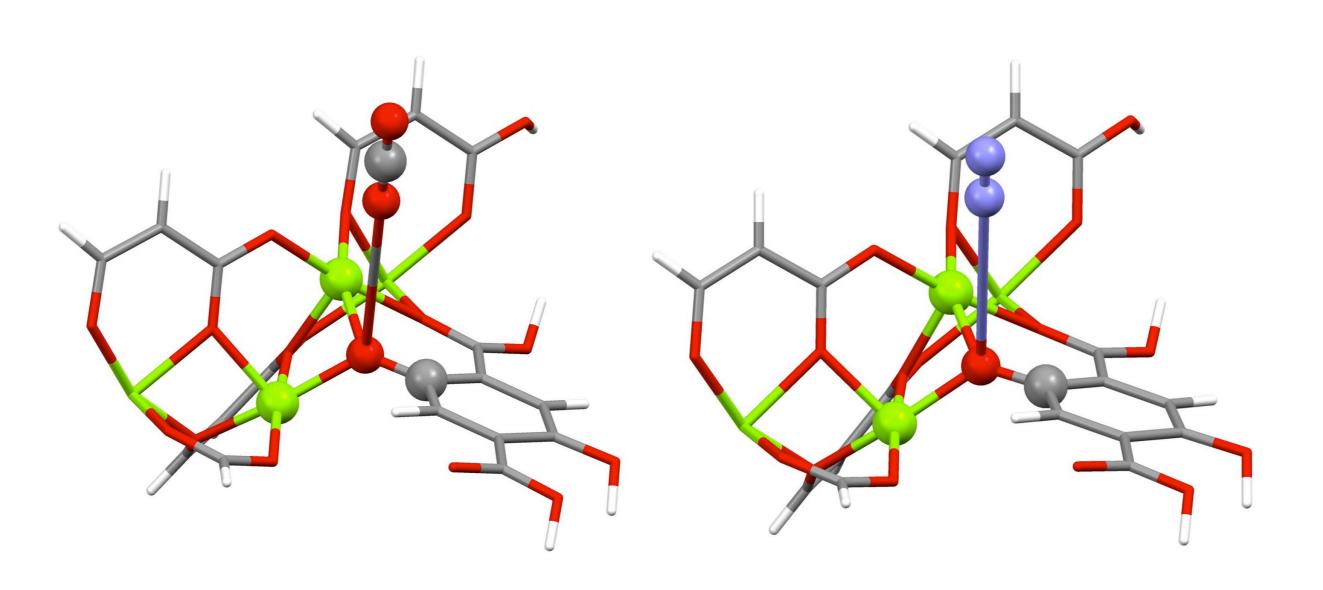
If we are lucky


Walton, K. S.; Millward, A. R.; Dubbeldam, D.; Frost, H.; Low, J. J.; Yaghi, O. M.; Snurr, R. Q. *J. Am. Chem. Soc.* **2008**, *130*, 406.

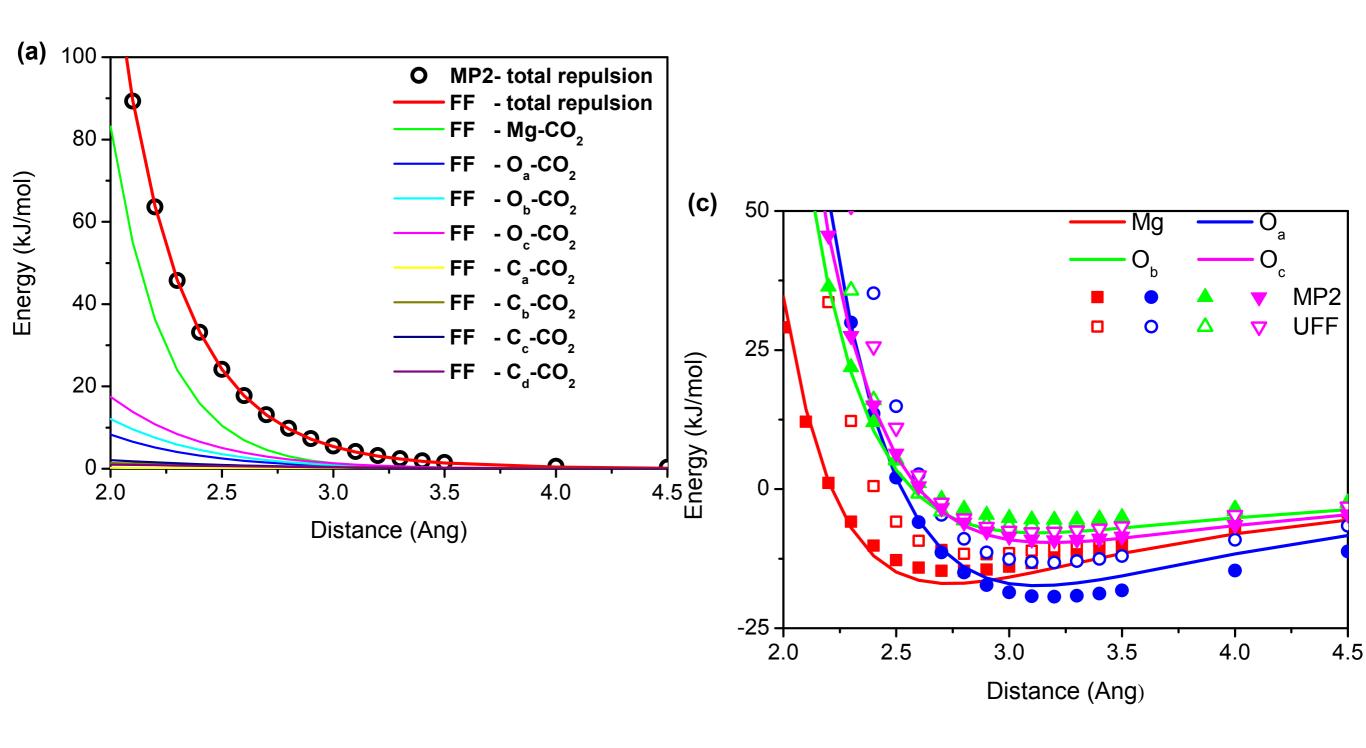
High CO₂ Capacity for Mg-MOF-74


Mg2(dobdc) (Mg-MOF-74)

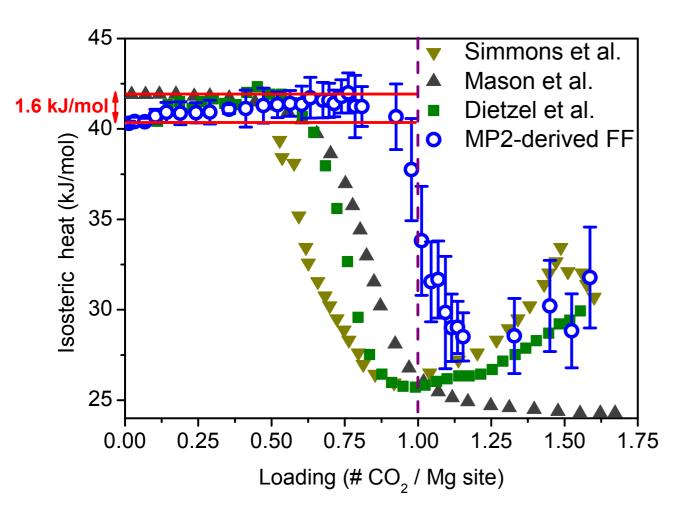
Open metal sites!

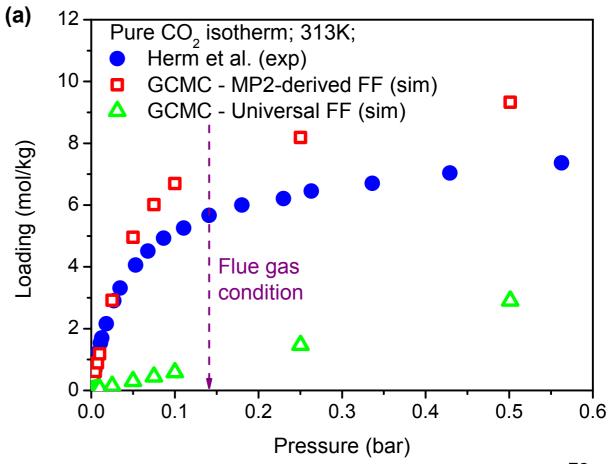

Queen, Brown, Britt, Zajdel, Hudson, Yaghi *J. Phys. Chem. C* 2011, *115*, 24915 Mason, Sumida, Herm, Krishna, Long *Energy Environ. Sci.* 2011, *4*, 3030

But we are not always that lucky

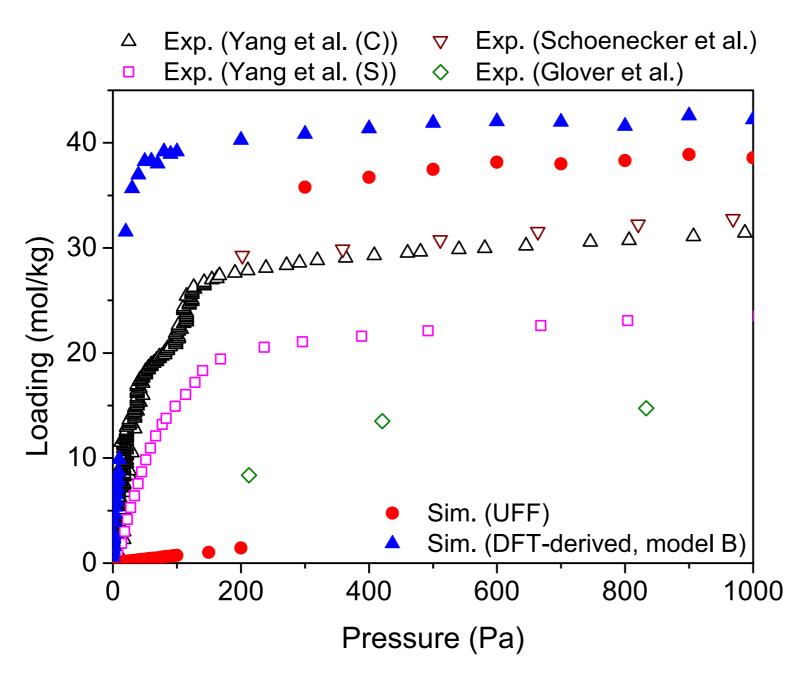

Open metal sites: the force fields are 2 orders of magnitude off!

Force Fields: correction from quantum chemistry

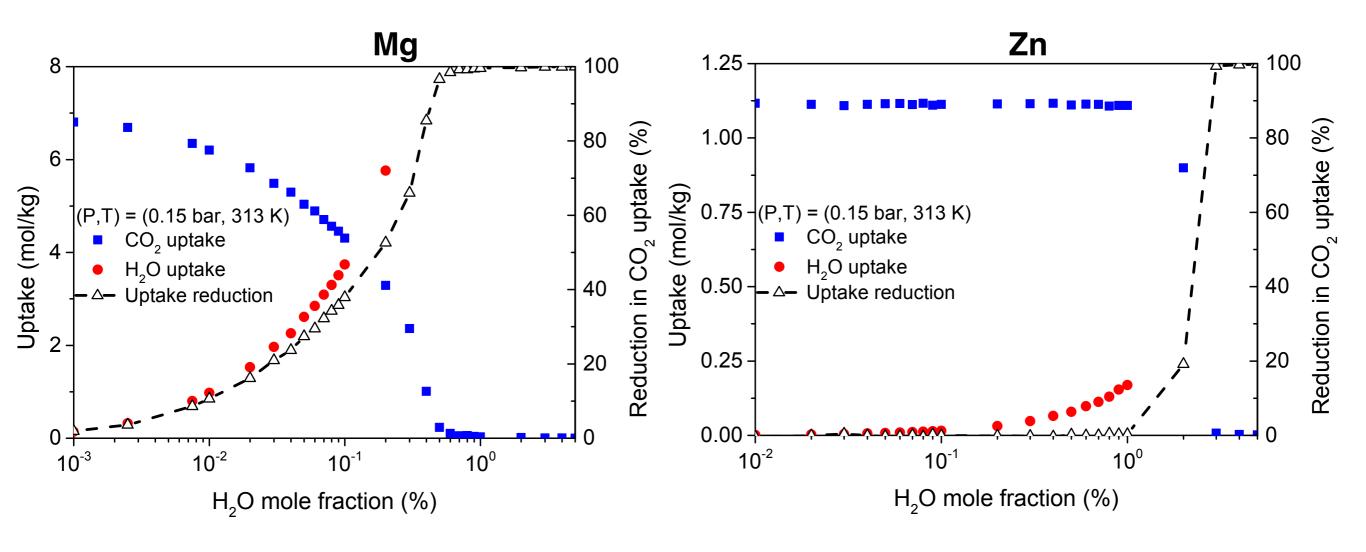



A. Dzubak, et al, Ab-initio Carbon Capture in Open-Site Metal Organic Frameworks Nat Chem (2012) http://dx.doi.org/0.1038/NCHEM.1432

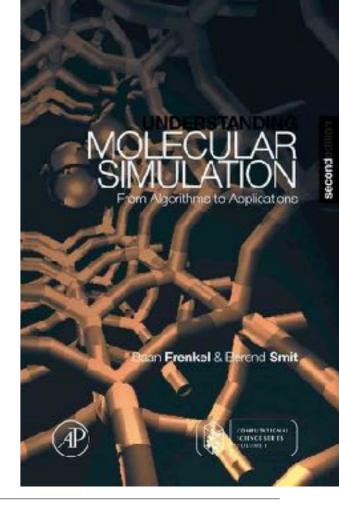
Force Fields



Predictions?



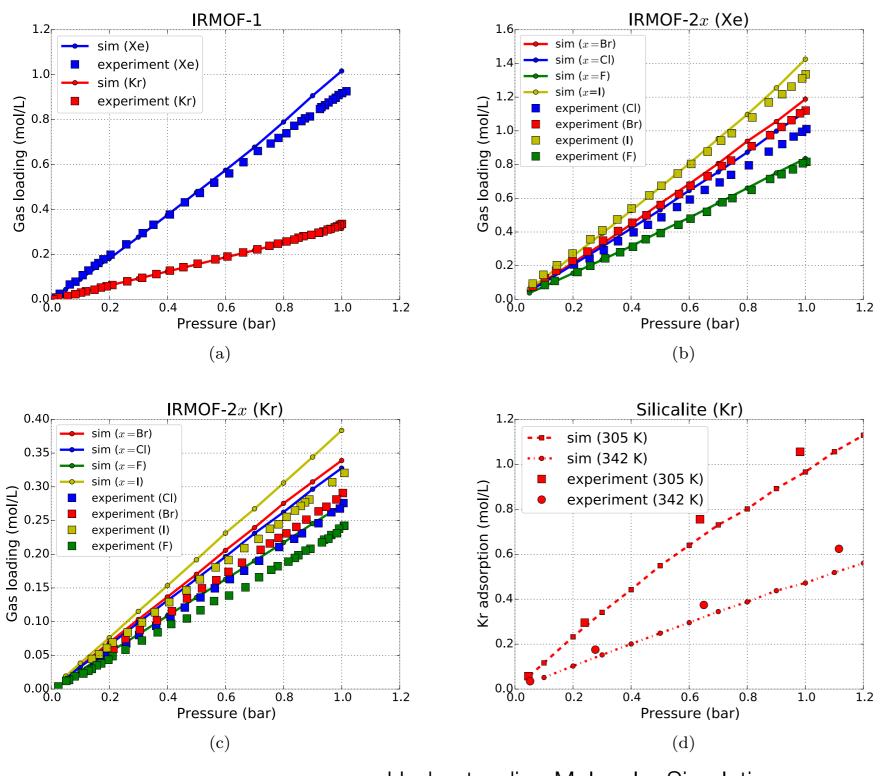
Water isotherms?


L.-C. Lin et al. J. Chem. Theory Comput. 2014.

Water-CO₂ mixtures

L.-C. Lin et al. J. Chem. Theory Comput. 2014.

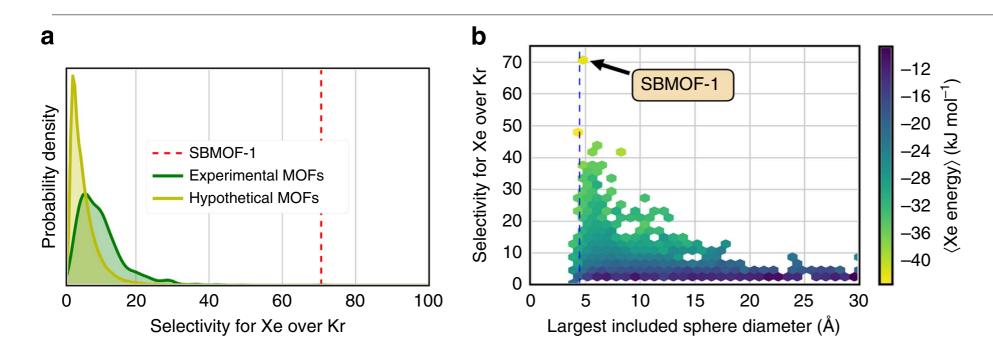
2.5.2 Xe/Kr separations

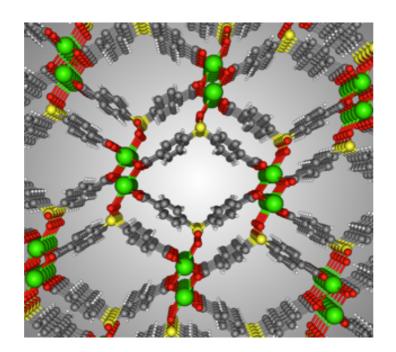

Separations of Xe/Kr

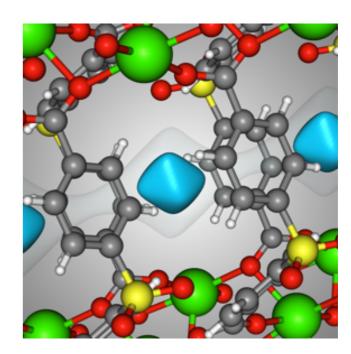
- Nuclear energy reprocessing: Xe Kr isotopes are produced (i.e., 85 Kr with $t_{1/2} = 10.8$ y)
- Xe used in several applications : cryogenic distillation of air:
 - pure Xe \$5000 kg

D. Banerjee, C. M. Simon, A. M. Plonka, R. K. Motkuri, J. Liu, X. Chen, B. Smit, J. B. Parise, M. Haranczyk, and P. K. Thallapally, *Metal-organic framework with optimally selective xenon adsorption and separation* Nat. Comm. **7** (11831) (2016) http://dx.doi.org/10.1038/ncomms11831

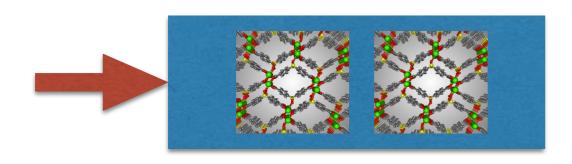
C. M. Simon, R. Mercado, S. K. Schnell, B. Smit, and M. Haranczyk, What Are the Best Materials To Separate a Xenon/Krypton Mixture? Chem. Mat. 27 (12), 4459 (2015) http://dx.doi.org/10.1021/acs.chemmater.5b01475


Comparison with experimental data


C. M. Simon, et al What Are the Bes Materials To Separate a Xenon/ Krypton Mixture? Chem. Mat. 27 (12), 4459 (2015) http://dx.doi.org/ 10.1021/acs.chemmater.5b01475

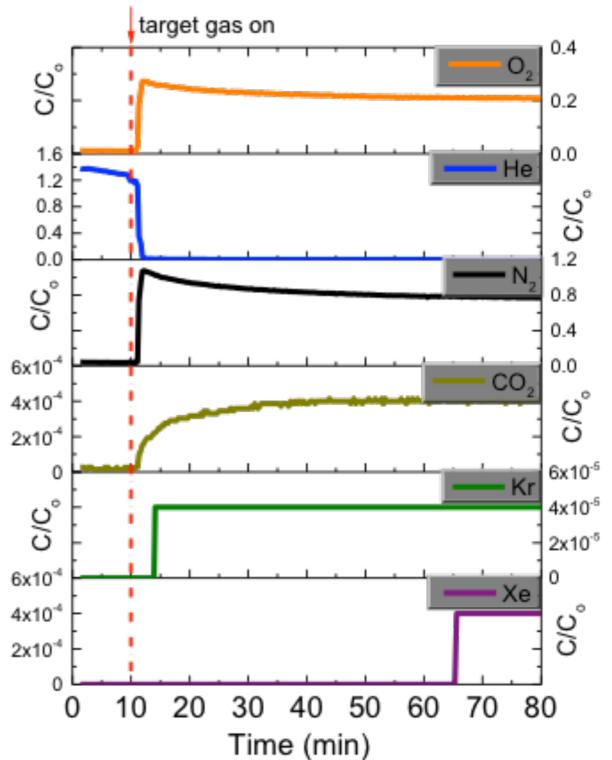

83

Screening



Top performing: SBMOF-1

Experiments: SBMOF-1



Model Mixture:

O₂, N₂, CO₂, Kr, Xe

(400 ppm Xe, 40 ppm Kr, 78.1% N₂, 20.9% O₂, 0.03% CO₂, and 0.9% Ar)

D. Banerjee, et al, *Metal-organic framework with optimally selective xenon adsorption and separation* Nat. Comm. **7** (11831) (2016) http://dx.doi.org/10.1038/ncomms11831

