Modeling lab
CH-315
2.14. Applications of Supervised Machine Learning
Description
In this lecture we take a look at some recent applications of ML in chemistry and materials science.
Page content
Notebook
please open it in Google Colab
https://github.com/jwchen25/Modeling_Lab_Class/blob/master/Simple_Tutorial_ML4Chem.ipynbLecture
Slides
Additional Resources/References
Word embeddings
(1) Huo, H.; Rong, Z.; Kononova, O.; Sun, W.; Botari, T.; He, T.; Tshitoyan, V.; Ceder, G. Semi-Supervised Machine-Learning Classification of Materials Synthesis Procedures. npj Comput Mater 2019, 5 (1), 1–7. https://doi.org/10.1038/s41524-019-0204-1.GPR
Boltzmann Generators
(5) Noé, F.; Olsson, S.; Köhler, J.; Wu, H. Boltzmann Generators: Sampling Equilibrium States of Many-Body Systems with Deep Learning. Science 2019, 365 (6457), eaaw1147. https://doi.org/10.1126/science.aaw1147.
Reinforcement Learning
There has been a recent discussion about this paper.
(6) Zhavoronkov, A.; Ivanenkov, Y. A.; Aliper, A.; Veselov, M. S.; Aladinskiy, V. A.; Aladinskaya, A. V.; Terentiev, V. A.; Polykovskiy, D. A.; Kuznetsov, M. D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R. R.; Zhebrak, A.; Minaeva, L. I.; Zagribelnyy, B. A.; Lee, L. H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Deep Learning Enables Rapid Identification of Potent DDR1 Kinase Inhibitors. Nat Biotechnol 2019, 37 (9), 1038–1040. https://doi.org/10.1038/s41587-019-0224-x.
(7) Zhavoronkov, A.; Aspuru-Guzik, A. Reply to ‘Assessing the Impact of Generative AI on Medicinal Chemistry.’ Nat Biotechnol 2020. https://doi.org/10.1038/s41587-020-0417-3.
(8) Walters, W. P.; Murcko, M. Assessing the Impact of Generative AI on Medicinal Chemistry. Nat Biotechnol 2020. https://doi.org/10.1038/s41587-020-0418-2.