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Interpreting the model 
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We would like to know what drives a phenomena (curiosity)

More practical:
Material design rules

Single metal catalyst: 
variation in metal and ligands

Importance of variables can help to 
understand which factors are important, 
e.g., type of atomic properties and global 
vs local

Nandy, Aditya, et al. ACS Catalysis 9.9 (2019): 8243-8255.
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Make better models/representations
example: the case of mechanical properties of MOFs

a new hypothetical MOF). This method was aptly named 
the Tinkertoy algorithm, because of the way the rigid  
building blocks snap together to form a lattice.

A challenge to using this algorithm is hinted at in 
its colloquial name: the building blocks are destined to 
snap together in a very specific way, such that it is only 
possible to construct MOF structures with the same 
underlying connectivity as the initial experimental 
structure. Moreover, to increase the diversity of under-
lying patterns (or nets) will sometimes require a signifi-
cant increase in the number of alignment vectors. As an 

example, consider the case of building MOF-14 (REF. 58). 
This MOF can be thought of consisting of two separate 
building blocks, the di-copper subunit, commonly 
known as a paddlewheel, and the benzene tri-benzoic 
acid (BTB) linker (FIG. 3). The symmetry of this network 
yields two unique BTB groups that are chiral images of 
one another. Thus, to assemble this material success-
fully, bond vectors for the copper paddlewheel and two 
separate BTB groups with non-superimposable orien-
tations are needed. In addition, the successful assembly 
of this material requires the correct arrangement of the 
chiral images on the paddlewheel, so the length of time 
to sample all possible bonding combinations would be 
non-trivial. In algorithmic terms, the time complexity of 
sampling the possible permutations of combining nodes 
in a growing graph (in this case, a MOF) is known to be 
of order (n!), where n is the number of SBUs of the grow-
ing MOF59. The algorithm could therefore take years to 
find the correct combination of SBUs.

The limitation of the Tinkertoy algorithm can be best 
illustrated by a topological analysis of the resulting net-
works, which showed that the 138,000 structures were 
made with only six underlying network topologies, most 
of which were primitive cubic (pcu)60. As a reference, 
a 2011 topological study on coordination polymers in 
the CSD showed that 4,709 structures could be found in 
more than 20 unique topologies (the largest portion of 
these were, in fact, pcu at 9.2%)21. Likewise, the CoRE 
database of experimental structures contains more than 
350 unique topologies (pcu again ranks first with 16% 
of the structures)42. Subsequently, it was shown that dif-
ferent topologies can yield different minimum and max-
imum values for surface area and void volume, and the 
geometries of these structures have an implicit effect on 
performance61–63, particularly when considering proper-
ties that are more sensitive to geometry and chemistry, 
such as CO2 adsorption at low partial pressures. Thus, 
in general, it would be advantageous to increase the 
range of topologies included in a database of materials. 
These observations motivated the development of more  
efficient approaches, discussed below64,65.

The following algorithms sample the same search 
space as the Tinkertoy approach but reduce the depend-
ence of computational material assembly on SBU align-
ment parameters, and instead attempt to best-fit SBUs 
to predefined net templates. It should be stressed that 
although recent articles26,64,66 have distinguished these 
assembly algorithms as being either ‘bottom-up’ or ‘top-
down’ when addressing the Tinkertoy and topology- 
based algorithms, they are essentially performing the 
same task, although the topology-based algorithms are 
arguably much more efficient at doing so.

In 2014, the first topology-based algorithm for 
generating porous materials was presented67, and it is 
included in the porous characterization software, Zeo++ 
(REFS 68,69). In this method, each SBU is identified by its 
bonding connection sites, such that the algorithm can 
abstract a certain shape and coordination number from 
the molecule. We stress that these connection sites do not 
guide the formation of a specific topology; they only iden-
tify how the SBU should be orientated in the template. 
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Figure 2 | The building of the prototypical MOF, HKUST-1, using different assembly 
methods. a|||6JG�CWVQOCVKE�CUUGODN[�QH�UGEQPFCT[�DWKNFKPI�WPKVU�
##5$7��OGVJQF�KU�C�
computationally intensive method that requires the creation of large hybrid building 
DNQEMU�
NGHV��VQ�GHHKEKGPVN[�DWKNF�*-756���
TKIJV���6JG�DWKNFKPI�DNQEMU�HQTO�C�OCVGTKCN�D[�
joining together through their ‘sticky atoms’, represented as large balls on the edges of 
each substituent. Each building block is represented with a different colour in the MOF 
(right). b|||6JG�n6KPMGTVQ[o�CNIQTKVJO�WUGU�CNKIPOGPV�RCTCOGVGTU�HQT�GCEJ�UGEQPFCT[�
DWKNFKPI�WPKV�
5$7���UJQYP�CU�VJG�TGF�CPF�DNWG�NKPGU�RTQVTWFKPI�HTQO�GCEJ�5$7�
NGHV���
9JGP�CUUGODNKPI�*-756����CP�KPKVKCN�nUGGFo�5$7�KU�RNCEGF��VJGP�C�TGEWTUKXG�UGCTEJ�QH�CNN�
possible bonding combinations is attempted until there are no free bonds. The topology 
QH�*-756���KU�GPEQFGF�KP�VJG�CNKIPOGPV�RCTCOGVGTU��CU�VJGUG�CTG�QTKGPVCVGF�VQ�QXGTNCR�
during assembly (right). c|||6JG�VQRQNQI[�DCUGF�CNIQTKVJOU�WUG�MPQYP�VQRQNQIKGU�CU�
VGORNCVGU�HQT�CUUGODNKPI�/1(U��(QT�*-756����VJG�VYKUVGF�DQTCEKVG�
tbo) topology is used 

TKIJV���KP�YJKEJ�VJG�%W�5$7�KU�QTKGPVCVGF�QP�VJG�nUSWCTGo�PQFGU�CPF�VJG�DGP\GPG�5$7�KU�
orientated on the ‘triangular’ nodes. Atom colours: Cu, orange; O, red; C, grey; H, white. 
Panel a is adapted with permission from REF. 55, Wiley-VCH.
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Simplified 
representation

It was shown that the underlying net is the 
most important factor for mechanical stability

Include net in representation

Moosavi, et al. ACS Central Science (2018)
Moghadam et al. Matter (2019)



Permutation importance
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1. Estimate the model error: eorig = ℒ(y, ̂yML)

2. For each feature j=1,..,n:
•  Generate permuted feature matrix for feature (j):

eperm
j = ℒ(y, f (xperm

j ))

Xperm
j =

1 x1,1 … x1, j … x1,n

1 x2,1 … x2, j … x2,n

1 ⋮ … ⋮ ⋱ ⋮
1 xm,1 … xm, j … xm,n

• Estimate the error for the permuted feature matrix:

FIj = eperm
j /eorig

j or eperm
j − eorig

j

• Estimate the error for the permuted feature matrix

X =

1 x1,1 x1,1 … x1,n

1 x2,1 x2,1 … x2,n

1 ⋮ ⋱ ⋮
1 xm,1 xm,1 … xm,n

y =

y1

y2

⋮
ym

̂yML = f(X), ℒ(y, ̂yML)
0.   Build the model 

Shuffle



Permutation importance
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• What happens if we have correlated features?

Permutation might make unphysical test cases

Split the importance between the correlated features

S = covalent radii
Z = nuclear charge



Summary of model interpretation
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Feature importance is a way to interpret the model 
•  Get chemical insight
•  Make better models

Permutation importance is a way to get the value of features in model 
predictions but one needs to be cautious to not over-interpret these numbers, 
e.g., when the features are correlated


