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Supervised machine learning
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What is featurisation/a descriptor?
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Encoding chemistry into numbers: “chemical space” to descriptor space

Chemical similarity
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What makes a descriptor good?
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Encoding chemistry into numbers

Descriptor Space: n dimension

d(xi, xj)

Good descriptors —> obey physics
• Invariant w.r.t. symmetries
• As low dimension as possible
• Cheap to compute
• Non-degenerate
• Transferability across elements



What makes a descriptor good?
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Encoding chemistry into numbers

Descriptor Space: n dimension

d(xi, xj)

Good descriptors:
• Invariant w.r.t. symmetries
• As low dimension as possible
• Cheap to compute
• Non-degenerate
• Transferability across elements

H({Z, R}) ↦ E Translation

Rotation Permutation
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Ad hoc descriptors or properties: 
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Based on chemical intuition
In principle, can work but often not generalisable 

• Atom identity
• Maximum positive charge
• Minimum negative charge
• etc.

Computed properties:

One hot featurisation

Borboudakis, et al. npj computational materials (2017) 
Anderson, et al. Chemistry of materials (2018)



Fragment based descriptors: fingerprints
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Binary vectors for molecular similarity
Varying length, e.g., FP2 fingerprint has 1024 bits

Rogers, D.; Hahn, M. “Extended-Connectivity 
Fingerprints.” J. Chem. Inf. and Model. 50:742-54 (2010)



Connectivity based descriptors: RACs
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Notice we are loosing 
geometric information
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χ, Z, T, S, I, αAtomic
properties

Bond distance

Janet, Jon Paul, and Heather J. Kulik. The Journal of Physical 
Chemistry (2017)



Connectivity based descriptors: RACs
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Connectivity based descriptors: RACs
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Connectivity based descriptors: RACs

11

start
scopeP

diff
d =

start

∑
i

scope

∑
j

(Pi − Pj)δ(di, j, d)Autocorrelations

[N]
all χdiff

1 =
[N]

∑
i

all

∑
j

(χi − χj)δ(di, j,1)

Examples:
O

C

H

C

C

C
C

C

H

N

H
H

H

O

1 bond distance



Connectivity based descriptors: RACs
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RACs for MOFs, hands on session in the afternoon
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https://github.com/hjkgrp/molSimplify



Encoding geometry: Coulomb matrix
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Mij =
0.5 Z2.4

i i = j
Zi Zj

( |ri − rj | )
i ≠ j

d(xi, xj) = d(ϵi, ϵ j) = ∑
I

|ϵi − ϵ j |

Inspired by how quantum mechanics works: 

H({Z, R}) Ψ E {Z, R} ML E⇔

Similarity is defined as:
The difference in eigenvalues of Ms between two systems

Rupp, Matthias, et al. "Fast and accurate modeling of molecular 
atomization energies with machine learning." Physical review 
letters 108.5 (2012): 058301.



And there exist many more!
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The choice must be motivated with the application

Maik Jablonka, Kevin, et al. "Big-Data Science in Porous Materials: 
Materials Genomics and Machine Learning." arXiv (2020): arXiv-2001.



Encoding local environments: symmetry functions
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Chemical Locality Assumption: decomposing property into local environments

property(descriptor) =
atoms

∑
i

modelsi(descriptori)

Energy can be decomposed into atomic contributions
—> this approach is used to describe PES
—> Scalable to large systems
—> differentiability of descriptors is essential

fcut(rij) =
1
2 [cos (π

rij

rc ) + 1] for rij ≤ rcut

0 for rij > rcut

G2
i = ∑

j

exp [−ηi(rij − rsi)2] fcut(rij)

ES =
Natoms,ν

∑
ν=1

Nelem

∑
μ=1

Eν
μ

Behler, Jörg, and Michele Parrinello. "Generalized neural-network 
representation of high-dimensional potential-energy surfaces." Physical review 
letters 98.14 (2007): 146401.



Complexity and richness
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Summary of featurisation
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❖ The aim is to map chemical space to numbers, such that:

❖ Chemical similarity is preserved

❖ Physics obeyed

❖ Many kinds of representation exist

❖ Global vs. Local

❖ Richness and complexity

❖ Should choose representation based on the application


