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Why ML in chemistry and materials science?

* It we agree molecular simulation is usetul:

= Then: let’s see where ML can help

The idea for a given intermolecular potential “exactly”
compute the thermodynamic and transport properties of
the system
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Why ML in chemistry and materials science?

# ML enables us to do new things too!

= We have access to enormous amount of data
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www.ccdc.cam.ac.uk

Latest Blog

Everybody wants to be a millionaire.

Find out more about how exciting the CCDC's journey to one million
published structures has been

World-leading experts in structural chemistry data, software and knowledge for materials and life science research and application

Big data leads the way for structural chemistry
The Cambridge Structural Database reaches 1,000,000 structures. Find out more here.
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Why ML in chemistry and materials science?

# ML enables us to do new things too!

Oxidation states —> metal centres of MOFs

Cu(l) macrocyclus Cu(ll) paddiewheel
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Current approaches
e Empirical assignment
e Theoretical models —> bond valence approach
e Quantum calculations/spectroscopy
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Why ML in chemistry and materials science?

# ML enables us to do new things too!

Current approaches

e Theoretical models

Cu(l) macrocyclus Cu(ll) paddlewheel
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# ML enables us to do new things too!

Current approaches

e Theoretical models
—> bond valence approach squere
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The “fourth paradigm™ of science

1600 1950 2000
Empiral Science Theoretical Computational Data Driven
(15t Paradigm) Science Science Science
(2"9 paradigm) (3" Paradigm) (4t" Paradigm)
E = ma
H|y) = E[y)
Experimental Development of Simulation of Machine Learning
Observation Theories and complex
Generalizations phenomena, High
troughput
computational
screenings

“It is not that machines are going to replace chemists. It’s that the chemists

who use machines will replace those that do not.”
- Derek Lowe, In the pipeline, Science Mag.

“Al is good at automatic tasks, rather than jobs.”
- Andrew Ng, Google Brain and Stanford
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