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❖ If we agree molecular simulation is useful:

Why ML in chemistry and materials science?
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➡ Then: let’s see where ML can help

The idea for a given intermolecular potential “exactly” 
compute the thermodynamic and transport properties of 
the system



❖ If we agree molecular simulation is useful:

Why ML in chemistry and materials science?

3

➡ Then: let’s see where ML can help

The idea for a given intermolecular potential “exactly” 
compute the thermodynamic and transport properties of 
the system

PropertiesMolecular 
SimulationIntermolecular 

potential: force field 
or ab initio

System 



❖ If we agree molecular simulation is useful:

Why ML in chemistry and materials science?

4

➡ Then: let’s see where ML can help

The idea for a given intermolecular potential “exactly” 
compute the thermodynamic and transport properties of 
the system

PropertiesMolecular 
SimulationIntermolecular 

potential: force field 
or ab initio

System 



❖ If we agree molecular simulation is useful:

Why ML in chemistry and materials science?

5

➡ Then: let’s see where ML can help

The idea for a given intermolecular potential “exactly” 
compute the thermodynamic and transport properties of 
the system

PropertiesMolecular 
SimulationIntermolecular 

potential: force field 
or ab initio

System 



❖ If we agree molecular simulation is useful:

Why ML in chemistry and materials science?

6

➡ Then: let’s see where ML can help

Properties

HΨ = EΨ Molecular 
Simulation

System 

ML 
Potentials

Seconds

Hours
Hours

Force Field/
QM

Molecular 
Simulation

Hours

HΨ = EΨ
Hours

ML
Seconds



❖ ML enables us to do new things too!
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➡ We have access to enormous amount of data
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Oxidation states —> metal centres of MOFs
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Current approaches
• Empirical assignment
• Theoretical models —> bond valence approach
• Quantum calculations/spectroscopy
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Current approaches
• Empirical assignment
• Theoretical models 

—> bond valence approach
• QM/spectroscopy
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The “fourth paradigm” of science
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“It is not that machines are going to replace chemists. It’s that the chemists 
who use machines will replace those that do not.”

- Derek Lowe, In the pipeline, Science Mag.

“AI is good at automatic tasks, rather than jobs.”
- Andrew Ng, Google Brain and Stanford
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