
CH314 – Structural Analysis Part III: X-ray Tools

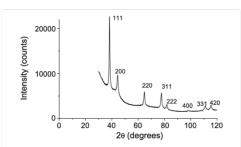
Exercise 3

1) Lets pick up the problem from last week again. The data below shows diffraction patterns from a solution of colloidal nanoparticles taken with an x-ray tube using the Cu $1K\alpha$ line with a wavelength of 1.54 Angstrom

Fig. 1. X-ray diffraction pattern from Ni(OH)₂ dispersions (a = 3.1273(2) Å, c = 4.610(3) Å) with diffraction peaks labeled with hkl indices. The 001 peak is

Results from the pseudo-Voigt function fit to the Ni(OH)₂ sample. 2θ is the peak position for the Cu K α_1 radiation wavelength (0.154056 nm).

hkl	Bragg angle 2θ (°)	Peak width 'β' (°)	Instrument resolution (°)	Corrected β (°)	Diameter (nm)
001	19.25	1.140	0.121	1.02	
100	33.06	0.197	0.115	0.08	
101	38.52	0.593	0.114	0.48	
102	52.06	0.876	0.117	0.76	
110	59.05	0.248	0.120	0.13	
111	62.67	0.550	0.122	0.43	



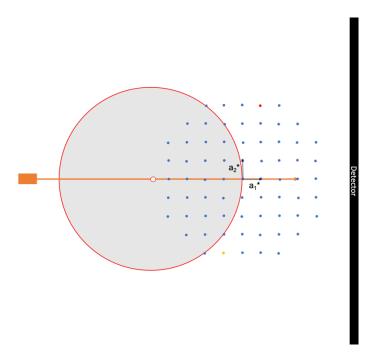

Fig. 2. X-ray diffraction patterns from dispersed Au particles (a = 4.067(3) Å) with diffraction peaks are labeled with hkl indices.

Table 2 Results from the pseudo-Voigt fit to the Au particles. 2θ is the peak position for the Cu $K\alpha_1$ radiation wavelength (0.154056 nm).

hkl	Bragg angle 2θ (°)	Peak width 'β' (°)	Instrument resolution (°)	Corrected β (°)	Diameter (nm)
111	38.21	0.580	0.114	0.47	
200	44.34	0.822	0.115	0.71	
220	64.69	0.810	0.123	0.68	
311	77.63	0.905	0.135	0.77	
420	115.34	1.194	0.119	1.07	

- a) What can you tell about the Ni(OH)₂ and the Au nanoparticles by just looking at the data?
- b) Calculate the nanoparticle dimensions for the 001 and 100 reflections for the $Ni(OH)_2$ and 111, 200 reflections for the Au particles.
- c) Sketch the dimensionality of each of the particles.
- d) Which lattice do the particles exhibit? Work on the Au nanoparticles first and guess for the Ni(OH)₂ particles.

2) The figure below shows a x-ray diffraction experiment in an Ewald sphere construction. The inverse lattice vector \mathbf{a} has a length of 4nm^{-1} .

- a) Which points will yield a diffraction peak?
- b) Which Bragg peaks will be observable on the detector?
- c) What do you need to do to observe the (01) peak)?
- d) What is the photon energy in this experiment? Remember that 1.24 keV corresponds to a wavelength of 1 nm.