Dynamics and Kinetics — Final Exam

January 19, 2024

Name:

Total 51 points, 3 h to complete the exam

Please note that this is not an open-book exam. You are allowed to use a non-
programmable calculator as well as a formula sheet, A5, single-sided, and
handwritten. The calculator and formula sheet will be checked during the exam.
Computers or are not permitted. Do not write with a pencil or a fountain pen that
can be erased. Please have your photo ID ready.
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1) The gas phase reaction between CO and Cl2 to form phosgene (Cl2CO)

kobs

Cl2+ CO — CI2CO
has the rate law

d[Cl,CO]

dt = Kobs [C12]3/2 [CO]
(6 points total)

a) Show that the following mechanism is consistent with this rate law.

k4
Cb+M = 2CI+M (fast)

Cl+CO+M = CICO+M (fast)
k_,

CICO + Cl2

Ii? Cl.CO + ClI (slow)

where M is any gas molecule present in the reaction container. Express k., in
terms of the rate constants for the individual steps of the reaction mechanism.
(3 points)

Assuming a pre-equilibrium in the first two steps, we can write

_[M][c1?  [cn?
PUICLIM] O [CL]

and
_[cico][M]  [cIcO]
2 [ci[col[M]  [cl][cO]
so that
[C1] = K, /*[Cl,]Y/?
and

[C1CO] = K, [CI][CO]



For the third reaction step, we obtain the rate law

% = ky[CICO][CL,]

We then substitute the expressions for [C]] and [CICO]

d[C1,CO]

k3K, [CI][CO][Cl,]
dt

= k3K,K,'*[Cl,]3/?[CO]
(2 points)

Using the principle of detailed balance, we find that

_ kakoky”?

bs = ————— 5
oS k_zki/lz

(1 point)

b) An alternative mechanism that has been proposed for this reaction is

k4
Cl+M = 2CI+M (fast)

Cl+Clz = Cls (fast)
k_;

ck+Cco " cico+cl (slow)

Show that this mechanism also gives the observed rate law.

(3 points)

For the third reaction step, we obtain the rate law

d[C1,CO]

2 = ks [Cl3][CO]

Assuming pre-equilibria in the first two steps, we find



kp _ 1G]

K, = =
* ko [cHCL]
which gives
ka
[Cl3] = = [CN[Cl,]
-2
as well as
ky  [CI]?[M]
Kl = =
k_y  [Cl,][M]
which gives
k 1/2
e = () [e]?
k_1
(2 points)
Substituting this expression for [Cl] gives
_ ka (k1 e 3/2
[Cl5] = k__z(k__1> [Cl,]

which after substitution into the rate law gives

d[C1,CO]  kskyk;”?

dt k—zki/lz

[CL,]3/2[CO]

which corresponds to the observed rate law.

(1 point)



2) Consider the following reaction mechanism.

k1

2A ! B (1)
k

B+C A+D 2)
-

Describe an algorithm (no need to write proper code) that uses the stochastic
method to simulate the reaction above. (8 points)

The algorithm consists of two steps, which are repeated for the duration of the simulation.
In the first step, the time interval At is determined after which the next reaction occurs.

The probability that none of the two reactions has occurred within a time interval At is:

pno_reaction(t) = e~ (kima(na—1D+kanpne)dt — o-adt

with
a = klnA(nA - 1) + kannC

and ny4, ng, and n, the number of molecules of A, B, and C respectively. Moreover, we
will use the variable np to describe the number of molecules D. Note that we have taken
into account that one molecule of A cannot react with itself.

(3 points)

The probability p,eqction(t)dt for a reaction to occur in a short time interval [¢t,t + dt] is
therefore equal to the change in the probability of no reaction occurring

_ pno_reaction (t)

e dt = ae %tdt

Preaction (t) dt =

The cumulative reaction probability (i.e., the probability that any reaction has occurred
between 0 and t) is therefore

t
p(t) = ] ae~¥dt =1— e % =1~ P, reaction(t)
0

(1 point)



We equate this cumulative probability to a random number r; between 0 and 1 and solve
for At in order to determine the time interval At after which the next reaction occurs.

st=tm(-L)
_anl—rl

which is equivalent to

(1 point)

In the second step of the algorithm, one determines which of the two reactions has
occurred from a second random number r, between 0 and 1 as follows.

. k _
1 hasoccuredif r, < kina(a-1)

Reaction
. K ~1
2 hasoccuredif 7, > aratna=l)

(2 points)

The numbers of molecules ny, ng, n;, and np are then updated accordingly, and the time
variable t is incremented by At. The two steps are then repeated for the duration of the
simulation, yielding the numbers of molecules ny, ng, nc, and np as a function of time ¢.

(1 point)



3) Enzyme kinetics (8 points total)

a) Acetylcholinesterase catalyzes the conversion of acetylthiocholine (ASCh) into
thiocholine. Reaction rates v were measured as a function of the substrate
concentration in the presence of different concentrations of the inhibitor tolserine.
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Which quantities can be obtained from the intercept with the y-axis (A) as well as
the intercept with the x-axis (B)? Based on these data, what conclusions can you
draw about the type of inhibition?

(2 points)

This plot corresponds to the Lineweaver-Burk plot. Therefore, we can identify the

intercept with the y-axis (A) with V“ ,Wherea' =1+ IEL] The intercept with the x-axis (B)
max EI
corresponds to ——— where a = 1 +L and Kgs is the Michaelis Menten constant
axKgs KEst

under pre-equilibrium (k, < k_,).
(1 point)

Since both the intercept with the y-axis and the slope change as a function of the inhibitor
concentration, we can deduce that mixed (noncompetitive) inhibition occurs.

(1 point)



b) The following mechanism has been proposed for the conversion of
acetylthiocholine (S) into thiocholine (P) by the enzyme acetylcholinesterase (E) in
the presence of the inhibitor tolserine (I). Note that this is a variant of the
mechanisms for inhibition that we have discussed in class.

k, k,
E+S+I1 2 ES +1 — E+P+I1
k_,
KEg; ks
El+S = ESI — E+P+I

a) Find an expression for the rate of the reaction in analogy to our treatment of
inhibited enzymatic reactions that we have discussed in class. The expression
should only depend on the concentrations of the substrate [S], the inhibitor [I], and
the initial enzyme concentration [E],. Explain the approximations you have to make
in your derivation.

(4 points)

The rate of the reaction is.

v = % = k,[ES] + ks [ES]]

(1 point)
Furthermore, we assume that k, and k5 are small, so that all other species exist in a pre-

equilibrium. We can therefore write down the dissociation constants of the different
complexes as follows.

(1 point)

In order to substitute the concentration [ES] in the expression for the rate of the reaction
v we write down the mass balance.



[Elo = [E]+ [ES] + [EI] + [ESI]
Kgs[ES]

_ Kgs[ESI[T] | Kgs[ES][S][I]
= S] + [ES] + e KroIS]

_ Kgs |, Kgsll] | Kgs[l]
= [ES] (1 + [S] + KE[S] + KESI)

For the concentration [ESI], we find

[EN(S] _ [EJNIS] _ Kas[T[ES]
KESI KEIKESI KEIKESI

[ESI] =

We thus obtain
= [ES] (kz + k3 KES[I] )

KEIKESI

Kgell]
E (k +k L)
[ ]0 2 3KEIKESI _ Vmax
Kes Keslll Kpsll = s, KEs
[S1 "Kg[SI” Kgsy [s]

With Vg = [Elo (kz + kg =200 ), o = 1+ 2L and o = 1+ -2

KEgIKES] ESI KEr

(2 points)



c) Show how this result changes in the limit of

— the complex El binding the substrate only very weakly?
— the inhibitor | binding only weakly to the enzyme E?

What scenario or type of inhibition do you obtain in either case?
(2 points)

In the limit of the complex El binding the substrate only very weakly, Kgg; goes to infinity,
and the reaction rate simplifies to the case of competitive inhibition.

L kB klEl
Kgsy—o 1+@+KE5[I] 1_}_0{@
[S] * Kgi[S] 5]

(1 point)

When the inhibitor binds only very weakly to the enzyme, Kz, goes to infinity, and no
inhibition occurs. We obtain a rate that resembles the Michaelis Menten equation, with

the Michaelis constant K, = % replaced by K¢ = % This is because our assumption
1 1
of a pre-equilibrium implies that k, is small compared with k_;.

. k,[E]o
lim v =
Kgj—oo 1+ KES

[S]

(1 point)

This problem has been adapted from the following publication: Kamal, M. A. et al.
“Kinetics of human acetylcholinesterase inhibition by the novel experimental Alzheimer
therapeutic agent, tolserine.” Biochemical pharmacology vol. 60,4 (2000): 561-70.



4) Kinetic theory of gases. (13 points total)
a) Calculate the probability P(u,,) that the x-component of the velocity u, of a

molecule lies in the range —u,, < u, < u,y. Express the probability P(u,,) in terms
of the error function erf(z).

erf(z) = \/%jze‘xzdx
0

Sketch the probability P(u,).
(4 points)

We calculate the probability by integrating over the one-dimensional velocity distribution.

m % Uyo  muy
ZkBTd
P(ux) = <2nkBT> f_ uxoe t

1 2

(™ \2 T p
B
= (ZTCkBT) fo ¢ ta

(1 point)

In order to introduce the error function, we substitute

mu? _ 5
2kpT
2kpT\"?
du, = ( ) dw
m
with
1
- (@)
0 szT x0
Therefore,
P(uy) = —fwoe“"zda) = erf(w,) = erf LI
x0) — \/E o - o) — ZkBT x0

(2 points)



The probability P(u,,) takes the shape of the error function, which is shown below
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(1 point)



b) Derive the speed distribution F(u)du of a two-dimensional ideal gas.

Hint: Start from a one-dimensional velocity distribution to derive a two-dimensional
distribution of the velocities, and then do a suitable coordinate transformation.

(6 points)

We begin with the one-dimensional distribution of the velocity

) = " 2kgT
f(u]) 27TkBT € ?

which gives us the two-dimensional velocity distribution

m(uz+u})

m T 2kgT
e 8T du,du,

27TkBT

h(ux, uy)duxduy =

(2 points)

We do a coordinate transformation with
u? = uf +uj
Uy =UC0SQ
U, =using

du,du, = udud¢
(2 points)
and obtain

_mu?
ue 2ksTdudg

h(u, p)dudgp = kT

(1 point)
which after integration over all angles becomes

mu?

m
F(uw)du = kB—Tue 2kpT dy

(1 point)



c) Calculate the most frequent speed with which gas molecules strike a surface.
Also calculate the most probable speed of a gas molecule. Finally, calculate the
ratio of both.

(3 points)

The most probable speed of a molecule w4y 4qs Can be calculated by setting the
derivative of the Maxwell-Boltzmann distribution F(u) to zero.

mu?

F(u)du o< u?e 2ksTdu

dF(u) .
du
d _mu? 2mu _mu?
a(uze ZkBT> = (— 2kBTuZ + Zu) e 2ksT =0
2k T
Umax,gas = m

(1 point)

In class, we have seen that the frequency with which molecules of speed u collide with a
wall is proportional to uF(u). We therefore determine the maximum w4y con Of this

function.

d(uF(u)) !
—~ 770
du
d _mu? 2mu _mu?
@<u3e 2’<BT> = <— 2kBTu3 + 3u2> e 2ksT =0
3kgT
Umax,coll = m
The ratio of both speeds is
Umax,coll — E
Umax,gas 2

(2 points)



5) Reaction dynamics
(8 points total)

a) Potential energy surfaces. Sketch the contour plot of a typical potential energy
surface of a reaction

AB+C->A+BC

with the reaction constrained to a linear geometry. Here, A, B, and C are atoms.
Assume that the reaction has a so-called “late” transition state, i.e. at the transition
state, the configuration of the atoms is more similar to the products than the
reactants. Draw the minimum energy path of the reaction and indicate where the
reactants, the products, and the transition state are located.

(4 points)

—— Products

Transition state

Reactants

\

BC

Contour plot (2 points)
draw reaction path, indicate reactants, products, and transition state (2 points)



b) Unimolecular reactions. Explain qualitatively how the Hinshelwood rate constant
and the RRK rate constant depend on the size of the molecule.

(4 points)

The Hinshelwood rate constant for the activation of a molecule through a collision

k Eg\* ! _Eo
k, = ;1(_0) o KpT
(s — 1! \kgT

increases with the number of oscillators s since the higher the number of vibrational
degrees of freedom, the more energy the molecule stores at thermal equilibrium, so that
the probability increases that the total energy of a molecule exceeds the threshold energy
E,.

(2 points)

In contrast, the RRK rate constant

E _ EO)S—l

k(E) = u( -

decreases with the number of oscillators s since the number of ways to distribute the
energy E in the molecule increases. This decreases the probability that the energy stored
in the critical mode exceeds the threshold energy E,.

(2 points)



6) Bimolecular collisions

(8 points total)

a) In class, we have derived the deflection function for hard spheres collsions by
first deriving an expression for the trajectory of a particle scattered by an arbitrary
central potential.

Show that one can also derive this deflection function simply from geometric
considerations of the collision geometry. Use the trigonometric identities given on
page 1 to arrive at the expression we obtained in class.

(2 points)

[,
vu’

From the sketch above we can see that the deflection angle is equal to
x(b) =m—26
(1 point)

with
i (6) l
S1h =

which gives us the final result.

x(b) =2 (g — arcsin (%)) = 2 - arccos (%)

This is the same expression as we derived in class.

(1 point)



b) Consider bimolecular collisions with a central potential

12

c
v = (5)
where c is a constant and r is the distance between the two particles.

Sketch representative trajectories that illustrate the scattering for small,
intermediate, and large impact parameters. Sketch the deflection function together
with the deflection function for a hard spheres collision. Explain qualitatively how
the differences between these two deflection functions arise.

(3 points)
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Since U(r) is a steep, repulse potential, the corresponding deflection function is similar
to that for hard spheres collisions. At large impact parameters, the deflection function
asymptotically approaches zero unlike for the hard spheres potential. This is because
U(r) approaches zero more slowly at large impact parameters than the hard spheres
potential, which suddenly drops to zero, so that a small deflection occurs even for large
impact parameters.

(3 points)



b) Consider bimolecular collisions in a central potential defined by a negative
Lorentzian

Ulr)=-—
r2+(%I‘)

N
central potential

0
Distance r

where c is a constant, r is the distance between the two particles, and T relates to
the width of the Lorentzian.

Sketch representative trajectories that illustrate the scattering for small,
intermediate, and large impact parameters. Sketch the deflection function together
with the deflection function for a hard spheres collision. Explain qualitatively how
the differences between these two deflection functions arise.

(3 points)
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Since U(r) is an attractive potential, the corresponding deflection function only shows
negative deflection angles — quite in contrast to scattering in a hard spheres potential,
which is repulsive and only shows positive deflection angles. This is a consequence of
the conservation of angular momentum. In the above sketch, the trajectories can only
curve around the origin in the clockwise sense, which leads to negative deflection angles.



Deflection angle

Impact parameter

The deflection function is zero for large impact parameters. However, as the impact
parameter decreases, the trajectories are increasingly deflected towards the origin and
even start to spiral around it. This causes the deflection function to drop to more negative
values, before it finally goes through a minimum. For very small impact parameters, only
small deflections occur, since the acceleration that the particles experience for most of
their trajectory are largely parallel to the direction of travel. If the impact parameter is zero,
no deflection occurs at all, and the deflection function is zero.

(3 points)



