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Dynamics and Kinetics – Final Exam 
 

January 19, 2024 
 

 
 
Name: 
 
 
Total 51 points, 3 h to complete the exam 
 
 
Please note that this is not an open-book exam. You are allowed to use a non-
programmable calculator as well as a formula sheet, A5, single-sided, and 
handwritten. The calculator and formula sheet will be checked during the exam. 
Computers or are not permitted. Do not write with a pencil or a fountain pen that 
can be erased. Please have your photo ID ready.  
 

  

∫ 𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = √ 𝜋𝜋

2√ 𝑎𝑎
   (𝑎𝑎 > 0) 

 
∫ 𝑥𝑥𝑥𝑥−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = 1

2𝑎𝑎
   (𝑎𝑎 > 0) 

 
∫ 𝑥𝑥2𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = √𝜋𝜋

4𝑎𝑎
3
2
   (𝑎𝑎 > 0) 

 
∫ 𝑥𝑥2𝑛𝑛𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = (2𝑛𝑛)!√𝜋𝜋

22𝑛𝑛+1𝑛𝑛!𝑎𝑎𝑛𝑛+
1
2
   (𝑎𝑎 > 0) 

 
∫ 𝑥𝑥2𝑛𝑛+1𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = 𝑛𝑛!

2𝑎𝑎𝑛𝑛+1
   (𝑎𝑎 > 0) 

 

Γ(𝑧𝑧 + 1) = � 𝑥𝑥𝑧𝑧𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑
∞

0

 

Γ(𝑧𝑧 + 1) =  𝑧𝑧Γ(𝑧𝑧), for any real 𝑧𝑧 
 
Γ(𝑛𝑛 + 1) = 𝑛𝑛!, for integer 𝑛𝑛 = 0, 1, 2, … 
 

Γ �
1
2
� = √𝜋𝜋 

 
cos(2𝛼𝛼) = cos2(𝛼𝛼) − sin2(𝛼𝛼)  
 
sin(2𝛼𝛼) = 2 sin(𝛼𝛼) cos(𝛼𝛼)  
 

cos2 �𝛼𝛼
2
� = 1+cos(𝛼𝛼)

2
,    sin2 �𝛼𝛼

2
� = 1−cos(𝛼𝛼)

2
 

 
∫ 1
√𝑟𝑟2−𝑥𝑥2

𝑑𝑑𝑑𝑑 = arcsin �𝑥𝑥
𝑟𝑟
�+ 𝐶𝐶  

 
arccos(−𝑥𝑥) = 𝜋𝜋 − arccos (𝑥𝑥)  
 
arcsin(𝑥𝑥) = 𝜋𝜋/2 − arccos (𝑥𝑥)  
 
cos(arcsin (𝑥𝑥)) = sin(arccos (𝑥𝑥)) = √1 − 𝑥𝑥2  
 
 
𝑘𝑘𝐵𝐵 = 1.38 ⋅ 10−23 J ⋅ K−1 
 
𝑅𝑅 = 8.31 J ⋅ K−1 ⋅ mol−1 
 
𝑁𝑁𝐴𝐴 = 6.02 ⋅ 1023 mol−1 
 
𝑒𝑒 = 1.60 ⋅ 10−19 C 
 
ℎ = 6.63 ⋅ 10−34 J⋅s 
 
𝜖𝜖0 = 8.85 ⋅ 10−12 F ⋅ m−1 
 
𝑐𝑐 = 3.00 ⋅ 108 𝑚𝑚 ⋅ 𝑠𝑠−1 
 
1 𝑎𝑎𝑎𝑎𝑎𝑎 = 1.66 ∙ 10−24 𝑔𝑔  
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1) The gas phase reaction between CO and Cl2 to form phosgene (Cl2CO) 
 

Cl2 + CO 
𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐�⎯�  Cl2CO 
 

has the rate law 
 

𝒅𝒅[𝐂𝐂𝐥𝐥𝟐𝟐𝐂𝐂𝐂𝐂]
𝒅𝒅𝒅𝒅

= 𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐 [Cl2]𝟑𝟑/𝟐𝟐[𝐂𝐂𝐂𝐂] 

 
(6 points total) 
 
a) Show that the following mechanism is consistent with this rate law.  
 

Cl2 + M 
𝒌𝒌𝟏𝟏
⇌
𝒌𝒌−𝟏𝟏

 2 Cl + M  (fast) 

Cl + CO + M 
𝒌𝒌𝟐𝟐
⇌
𝒌𝒌−𝟐𝟐

 ClCO + M  (fast) 

ClCO + Cl2 𝒌𝒌𝟑𝟑
→  Cl2CO + Cl  (slow) 

where M is any gas molecule present in the reaction container. Express 𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐 in 
terms of the rate constants for the individual steps of the reaction mechanism. 
 
 
(3 points) 
 
Assuming a pre-equilibrium in the first two steps, we can write 
 

𝐾𝐾1 =
[M][Cl]2

[Cl2][M]
=

[Cl]2

[Cl2]
 

 
and  
 

𝐾𝐾2 =
[ClCO][M]

[Cl][CO][M]
=

[ClCO]
[Cl][CO]

 

 
so that 

[Cl] =  𝐾𝐾1
1/2[Cl2]1/2 

 
and  
 

[ClCO] = 𝐾𝐾2[Cl][CO] 
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For the third reaction step, we obtain the rate law 
 

𝑑𝑑[Cl2CO]
𝑑𝑑𝑑𝑑

 = 𝑘𝑘3[ClCO][Cl2] 

 
We then substitute the expressions for [Cl] and [ClCO] 
 

𝑑𝑑[Cl2CO]
𝑑𝑑𝑑𝑑

 = 𝑘𝑘3𝐾𝐾2[Cl][CO][Cl2]  

 = 𝑘𝑘3𝐾𝐾2𝐾𝐾1
1/2[Cl2]3/2[CO]  

(2 points) 
 
Using the principle of detailed balance, we find that 
 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑘𝑘3𝑘𝑘2𝑘𝑘1

1/2

𝑘𝑘−2𝑘𝑘−1
1/2  

 
(1 point) 
 
 
 
b) An alternative mechanism that has been proposed for this reaction is  
 

Cl2 + M 
𝒌𝒌𝟏𝟏
⇌
𝒌𝒌−𝟏𝟏

 2 Cl + M (fast) 

Cl + Cl2 
𝒌𝒌𝟐𝟐
⇌
𝒌𝒌−𝟐𝟐

 Cl3 (fast) 

Cl3 + CO  𝒌𝒌𝟑𝟑
→  Cl2CO + Cl (slow) 

 
Show that this mechanism also gives the observed rate law. 
 
(3 points) 
 
 
For the third reaction step, we obtain the rate law 
 

𝑑𝑑[Cl2CO]
𝑑𝑑𝑑𝑑

= 𝑘𝑘3 [Cl3][CO] 
 
Assuming pre-equilibria in the first two steps, we find 



Dynamics and Kinetics – Final Exam, Jan. 19, 2024 
 

4 

 

𝐾𝐾2 =
𝑘𝑘2
𝑘𝑘−2

=
[Cl3]

[Cl][Cl2] 

which gives  
 

[Cl3] =  
𝑘𝑘2
𝑘𝑘−2

[Cl][Cl2] 

 
as well as  
 

𝐾𝐾1 =
𝑘𝑘1
𝑘𝑘−1

=
[Cl]2[M]
[Cl2][M] 

 
which gives 
 

[Cl] = �
𝑘𝑘1
𝑘𝑘−1

�
1/2

[Cl2]1/2 

 
(2 points) 
 
Substituting this expression for [Cl] gives 
 

[Cl3] =  
𝑘𝑘2
𝑘𝑘−2

�
𝑘𝑘1
𝑘𝑘−1

�
1/2

[Cl2]3/2 

 
 
which after substitution into the rate law gives 
 

𝑑𝑑[Cl2CO]
𝑑𝑑𝑑𝑑

=
𝑘𝑘3𝑘𝑘2𝑘𝑘1

1/2

𝑘𝑘−2𝑘𝑘−1
1/2 [Cl2]3/2[CO] 

 
which corresponds to the observed rate law. 
 
(1 point) 
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2) Consider the following reaction mechanism. 

2 A  𝒌𝒌𝟏𝟏
→  B (1) 

B + C  𝒌𝒌𝟐𝟐
→  A + D (2) 

 
Describe an algorithm (no need to write proper code) that uses the stochastic 
method to simulate the reaction above. (8 points) 
 
The algorithm consists of two steps, which are repeated for the duration of the simulation. 
 
In the first step, the time interval Δ𝑡𝑡 is determined after which the next reaction occurs. 
 
The probability that none of the two reactions has occurred within a time interval Δ𝑡𝑡 is: 
 

𝑝𝑝𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) =  𝑒𝑒−(𝑘𝑘1𝑛𝑛𝐴𝐴(𝑛𝑛𝐴𝐴−1)+𝑘𝑘2𝑛𝑛𝐵𝐵𝑛𝑛𝐶𝐶)𝛥𝛥𝛥𝛥 = 𝑒𝑒−𝛼𝛼𝛼𝛼𝛼𝛼 
 
with 
 

𝛼𝛼 =  𝑘𝑘1𝑛𝑛𝐴𝐴(𝑛𝑛𝐴𝐴 − 1) + 𝑘𝑘2𝑛𝑛𝐵𝐵𝑛𝑛𝐶𝐶 
 
and 𝑛𝑛𝐴𝐴, 𝑛𝑛𝐵𝐵, and 𝑛𝑛𝐶𝐶 the number of molecules of A, B, and C respectively. Moreover, we 
will use the variable 𝑛𝑛𝐷𝐷 to describe the number of molecules D. Note that we have taken 
into account that one molecule of A cannot react with itself. 
 
 
(3 points) 
 
 
The probability 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)𝑑𝑑𝑑𝑑 for a reaction to occur in a short time interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑] is 
therefore equal to the change in the probability of no reaction occurring 
 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)𝑑𝑑𝑑𝑑 =  −
𝑝𝑝𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)

𝑑𝑑𝑑𝑑
 𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑒𝑒−𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑 

 
The cumulative reaction probability (i.e., the probability that any reaction has occurred 
between 0 and 𝑡𝑡) is therefore 
 

𝑝𝑝𝑟𝑟(𝑡𝑡) =  � 𝛼𝛼𝑒𝑒−𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
𝑡𝑡

0
= 1 −  𝑒𝑒−𝛼𝛼𝛼𝛼 = 1 − 𝑝𝑝𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) 

 
(1 point) 
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We equate this cumulative probability to a random number 𝑟𝑟1 between 0 and 1 and solve 
for Δ𝑡𝑡 in order to determine the time interval Δ𝑡𝑡 after which the next reaction occurs. 
 

𝛥𝛥𝛥𝛥 =  
1
𝛼𝛼

ln �
1

1 − 𝑟𝑟1
�  

 
which is equivalent to 
 

𝛥𝛥𝛥𝛥 =  
1
𝛼𝛼

ln �
1
𝑟𝑟1
�  

 
(1 point) 
 
In the second step of the algorithm, one determines which of the two reactions has 
occurred from a second random number 𝑟𝑟2 between 0 and 1 as follows. 
 
 

Reaction   �
1 has occured if 𝑟𝑟2 <  𝑘𝑘1𝑛𝑛A(𝑛𝑛A−1)

𝛼𝛼

2 has occured if 𝑟𝑟2 ≥  𝑘𝑘1𝑛𝑛A(𝑛𝑛A−1)
𝛼𝛼

 

 
 
(2 points) 
 
The numbers of molecules 𝑛𝑛𝐴𝐴, 𝑛𝑛𝐵𝐵, 𝑛𝑛𝐶𝐶, and 𝑛𝑛D are then updated accordingly, and the time 
variable 𝑡𝑡 is incremented by 𝛥𝛥𝛥𝛥. The two steps are then repeated for the duration of the 
simulation, yielding the numbers of molecules 𝑛𝑛𝐴𝐴, 𝑛𝑛𝐵𝐵, 𝑛𝑛𝐶𝐶, and 𝑛𝑛D as a function of time 𝑡𝑡. 
 
(1 point) 
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3) Enzyme kinetics (8 points total) 
 
a) Acetylcholinesterase catalyzes the conversion of acetylthiocholine (ASCh) into 
thiocholine. Reaction rates 𝒗𝒗 were measured as a function of the substrate 
concentration in the presence of different concentrations of the inhibitor tolserine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Which quantities can be obtained from the intercept with the y-axis (A) as well as 
the intercept with the x-axis (B)? Based on these data, what conclusions can you 
draw about the type of inhibition? 
 
(2 points) 
 
This plot corresponds to the Lineweaver-Burk plot. Therefore, we can identify the 
intercept with the y-axis (A) with 𝛼𝛼′

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚
, where 𝛼𝛼′ = 1 + [I]

𝐾𝐾𝐸𝐸𝐸𝐸
. The intercept with the x-axis (B) 

corresponds to − 𝛼𝛼′

𝛼𝛼 ∗ 𝐾𝐾𝐸𝐸𝐸𝐸
, where 𝛼𝛼 = 1 + [I]

𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸
 and 𝐾𝐾𝐸𝐸𝐸𝐸 is the Michaelis Menten constant 

under pre-equilibrium (𝑘𝑘2 ≪ 𝑘𝑘−1). 
 
(1 point) 
 
Since both the intercept with the y-axis and the slope change as a function of the inhibitor 
concentration, we can deduce that mixed (noncompetitive) inhibition occurs.  
 
(1 point) 
 
 
 



Dynamics and Kinetics – Final Exam, Jan. 19, 2024 
 

8 

b) The following mechanism has been proposed for the conversion of 
acetylthiocholine (S) into thiocholine (P) by the enzyme acetylcholinesterase (E) in 
the presence of the inhibitor tolserine (I). Note that this is a variant of the 
mechanisms for inhibition that we have discussed in class. 
 

E + S + I 
𝒌𝒌1
⇌
𝒌𝒌−1

 ES + I 
𝒌𝒌2
⟶ E + P + I 

⇃↾ 𝑲𝑲𝑬𝑬𝑬𝑬     

EI + S 
𝑲𝑲𝑬𝑬𝑬𝑬𝑬𝑬
⇋  ESI 

𝒌𝒌3
⟶ E + P + I 

 
a) Find an expression for the rate of the reaction in analogy to our treatment of 
inhibited enzymatic reactions that we have discussed in class. The expression 
should only depend on the concentrations of the substrate [𝐒𝐒], the inhibitor [𝐈𝐈], and 
the initial enzyme concentration [𝐄𝐄]𝟎𝟎. Explain the approximations you have to make 
in your derivation. 
 
(4 points) 
 
 
The rate of the reaction is. 
 

𝑣𝑣 =
𝑑𝑑[P]
𝑑𝑑𝑑𝑑

= 𝑘𝑘2[ES] + 𝑘𝑘3[ESI] 

 
(1 point) 
 
Furthermore, we assume that 𝑘𝑘2 and 𝑘𝑘3 are small, so that all other species exist in a pre-
equilibrium. We can therefore write down the dissociation constants of the different 
complexes as follows.  
 
 

𝐾𝐾𝐸𝐸𝐸𝐸 =
𝑘𝑘1
𝑘𝑘−1

=
[E][S]
[ES] ;    𝐾𝐾𝐸𝐸𝐸𝐸 =  

[E][I]
[EI]

;      𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸 =
[EI][S]
[ESI]

 

 
 
(1 point) 
 
In order to substitute the concentration [ES] in the expression for the rate of the reaction 
𝑣𝑣 we write down the mass balance. 
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[E]0 = [E] + [ES] + [EI] + [ESI]  

 = 
𝐾𝐾𝐸𝐸𝐸𝐸[ES]

[S]
+ [ES] + 𝐾𝐾𝐸𝐸𝐸𝐸[ES][I]

𝐾𝐾𝐸𝐸𝐸𝐸[S]
+ 𝐾𝐾𝐸𝐸𝐸𝐸[ES][S][I]

𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸[S]
  

 = [ES] �1 + 𝐾𝐾𝐸𝐸𝐸𝐸
[S]

+ 𝐾𝐾𝐸𝐸𝐸𝐸[I]
𝐾𝐾𝐸𝐸𝐸𝐸[S]

+ 𝐾𝐾𝐸𝐸𝐸𝐸[I]
𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸

�  

 
For the concentration [ESI], we find 
 

[ESI] =
[EI][S]
𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸

=
[E][I][S]
𝐾𝐾𝐸𝐸𝐸𝐸𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸

=
𝐾𝐾𝐸𝐸𝐸𝐸[I][𝐸𝐸𝐸𝐸]
𝐾𝐾𝐸𝐸𝐸𝐸𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸

 

 
We thus obtain 
 

𝑣𝑣 = 𝑘𝑘2[ES] + 𝑘𝑘3[ESI]  

 = [ES] �𝑘𝑘2 + 𝑘𝑘3
𝐾𝐾𝐸𝐸𝐸𝐸[I]
𝐾𝐾𝐸𝐸𝐸𝐸𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸

�  

 = 
[E]0�𝑘𝑘2+𝑘𝑘3

𝐾𝐾𝐸𝐸𝐸𝐸[I]
𝐾𝐾𝐸𝐸𝐸𝐸𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸

�

1+𝐾𝐾𝐸𝐸𝐸𝐸[S] +
𝐾𝐾𝐸𝐸𝐸𝐸[I]
𝐾𝐾𝐸𝐸𝐸𝐸[S]+

𝐾𝐾𝐸𝐸𝐸𝐸[I]
𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸

= 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

𝛼𝛼′+𝛼𝛼𝐾𝐾𝐸𝐸𝐸𝐸[S]

  

 
With 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = [E]0 �𝑘𝑘2 + 𝑘𝑘3

𝐾𝐾𝐸𝐸𝐸𝐸[I]
𝐾𝐾𝐸𝐸𝐸𝐸𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸

�, 𝛼𝛼′ = 1 + 𝐾𝐾𝐸𝐸𝐸𝐸[I]
𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸

, and 𝛼𝛼 = 1 + [I]
𝐾𝐾𝐸𝐸𝐸𝐸

. 
  
(2 points) 
 
  



Dynamics and Kinetics – Final Exam, Jan. 19, 2024 
 

10 

c) Show how this result changes in the limit of 
 

– the complex EI binding the substrate only very weakly? 
– the inhibitor I binding only weakly to the enzyme E? 

 
What scenario or type of inhibition do you obtain in either case? 
 
(2 points) 
 
In the limit of the complex EI binding the substrate only very weakly, 𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸 goes to infinity, 
and the reaction rate simplifies to the case of competitive inhibition.  
 

lim
𝐾𝐾𝐸𝐸𝐸𝐸𝐸𝐸→∞

𝑣𝑣 =
𝑘𝑘2[E]0

1 + 𝐾𝐾𝐸𝐸𝐸𝐸
[S] + 𝐾𝐾𝐸𝐸𝐸𝐸[I]

𝐾𝐾𝐸𝐸𝐸𝐸[S]

=
𝑘𝑘2[E]0

1 + 𝛼𝛼 𝐾𝐾𝐸𝐸𝐸𝐸[S]
 

 
(1 point) 
  

When the inhibitor binds only very weakly to the enzyme, 𝐾𝐾𝐸𝐸𝐸𝐸 goes to infinity, and no 
inhibition occurs. We obtain a rate that resembles the Michaelis Menten equation, with 
the Michaelis constant 𝐾𝐾𝑀𝑀 = 𝑘𝑘−1+𝑘𝑘2

𝑘𝑘1
 replaced by 𝐾𝐾𝐸𝐸𝐸𝐸 = 𝑘𝑘−1

𝑘𝑘1
. This is because our assumption 

of a pre-equilibrium implies that 𝑘𝑘2 is small compared with 𝑘𝑘−1. 

lim
𝐾𝐾𝐸𝐸𝐸𝐸→∞

𝑣𝑣 =
𝑘𝑘2[E]0

1 + 𝐾𝐾𝐸𝐸𝐸𝐸
[S]

 

 
(1 point) 
 
 
This problem has been adapted from the following publication: Kamal, M. A. et al. 
“Kinetics of human acetylcholinesterase inhibition by the novel experimental Alzheimer 
therapeutic agent, tolserine.” Biochemical pharmacology vol. 60,4 (2000): 561-70. 
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4) Kinetic theory of gases. (13 points total) 
 
a) Calculate the probability 𝑷𝑷(𝒖𝒖𝒙𝒙𝒙𝒙) that the x-component of the velocity 𝒖𝒖𝒙𝒙 of a 
molecule lies in the range −𝒖𝒖𝒙𝒙𝒙𝒙 ≤ 𝒖𝒖𝒙𝒙 ≤ 𝒖𝒖𝒙𝒙𝒙𝒙. Express the probability 𝑷𝑷(𝒖𝒖𝒙𝒙𝒙𝒙) in terms 
of the error function 𝒆𝒆𝒆𝒆𝒆𝒆(𝒛𝒛). 
 

𝒆𝒆𝒆𝒆𝒆𝒆(𝒛𝒛) =
𝟐𝟐
√𝝅𝝅

� 𝒆𝒆−𝒙𝒙𝟐𝟐𝒅𝒅𝒅𝒅
𝒛𝒛

𝟎𝟎
 

 
Sketch the probability 𝑷𝑷(𝒖𝒖𝒙𝒙𝒙𝒙). 
 
(4 points) 
 
We calculate the probability by integrating over the one-dimensional velocity distribution. 
 

𝑃𝑃(𝑢𝑢𝑥𝑥0)  = �
𝑚𝑚

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
�

1
2
� 𝑒𝑒

−𝑚𝑚𝑢𝑢𝑥𝑥
2

2𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑢𝑢𝑥𝑥
𝑢𝑢𝑥𝑥0

−𝑢𝑢𝑥𝑥0

 

 

 = 2 �
𝑚𝑚

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
�
1
2
� 𝑒𝑒−

𝑚𝑚𝑢𝑢𝑥𝑥2
2𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑢𝑢𝑥𝑥

𝑢𝑢𝑥𝑥0

0
 

 
 
(1 point)  
 
In order to introduce the error function, we substitute  
 

𝑚𝑚𝑢𝑢𝑥𝑥2

2𝑘𝑘𝐵𝐵𝑇𝑇
= 𝜔𝜔2 

 

𝑑𝑑𝑢𝑢𝑥𝑥 = �
2𝑘𝑘𝐵𝐵𝑇𝑇
𝑚𝑚

�
1/2 

𝑑𝑑𝑑𝑑 
 
with 

𝜔𝜔0 = �
𝑚𝑚

2𝑘𝑘𝐵𝐵𝑇𝑇
�
1
2
𝑢𝑢𝑥𝑥0 

 
Therefore, 
 

𝑃𝑃(𝑢𝑢𝑥𝑥0) =
2
√𝜋𝜋

� 𝑒𝑒−𝜔𝜔2𝑑𝑑𝑑𝑑
𝜔𝜔0

0
= erf(𝜔𝜔0) = erf ��

𝑚𝑚
2𝑘𝑘𝐵𝐵𝑇𝑇

 𝑢𝑢𝑥𝑥0� 

 
(2 points) 
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The probability 𝑃𝑃(𝑢𝑢𝑥𝑥0) takes the shape of the error function, which is shown below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(1 point) 
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b) Derive the speed distribution 𝑭𝑭(𝒖𝒖)𝒅𝒅𝒅𝒅 of a two-dimensional ideal gas. 
 
Hint: Start from a one-dimensional velocity distribution to derive a two-dimensional 
distribution of the velocities, and then do a suitable coordinate transformation.  
 
(6 points) 
 
We begin with the one-dimensional distribution of the velocity 
 

𝑓𝑓�𝑢𝑢𝑗𝑗� = �
𝑚𝑚

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
𝑒𝑒−

𝑚𝑚𝑢𝑢𝑗𝑗
2

2𝑘𝑘𝐵𝐵𝑇𝑇 

 
which gives us the two-dimensional velocity distribution 
 

ℎ�𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦�𝑑𝑑𝑢𝑢𝑥𝑥𝑑𝑑𝑢𝑢𝑦𝑦 =
𝑚𝑚

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
𝑒𝑒−

𝑚𝑚�𝑢𝑢𝑥𝑥2+𝑢𝑢𝑦𝑦2�
2𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑢𝑢𝑥𝑥𝑑𝑑𝑢𝑢𝑦𝑦 

 
 
(2 points) 
 
We do a coordinate transformation with 
 

𝑢𝑢2 = 𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 
𝑢𝑢𝑥𝑥 = 𝑢𝑢 cos𝜙𝜙 
𝑢𝑢𝑦𝑦 = 𝑢𝑢 sin𝜙𝜙 

𝑑𝑑𝑢𝑢𝑥𝑥𝑑𝑑𝑢𝑢𝑦𝑦 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 
 
 
(2 points)  
 
and obtain 
 

ℎ�(𝑢𝑢,𝜙𝜙)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑚𝑚

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
𝑢𝑢𝑒𝑒−

𝑚𝑚𝑢𝑢2
2𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 
(1 point) 
 
which after integration over all angles becomes 
 

𝐹𝐹(𝑢𝑢)𝑑𝑑𝑑𝑑 =
𝑚𝑚
𝑘𝑘𝐵𝐵𝑇𝑇

𝑢𝑢𝑒𝑒−
𝑚𝑚𝑢𝑢2
2𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑑𝑑 

 
(1 point) 
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c) Calculate the most frequent speed with which gas molecules strike a surface. 
Also calculate the most probable speed of a gas molecule. Finally, calculate the 
ratio of both. 
 
(3 points) 
 
The most probable speed of a molecule 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑔𝑔𝑔𝑔 can be calculated by setting the 
derivative of the Maxwell-Boltzmann distribution 𝐹𝐹(𝑢𝑢) to zero.  
 

𝐹𝐹(𝑢𝑢)𝑑𝑑𝑑𝑑 ∝ 𝑢𝑢2𝑒𝑒−
𝑚𝑚𝑢𝑢2
2𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑑𝑑 

 
𝑑𝑑𝑑𝑑(𝑢𝑢)
𝑑𝑑𝑑𝑑

!
=0 

𝑑𝑑
𝑑𝑑𝑑𝑑

�𝑢𝑢2𝑒𝑒−
𝑚𝑚𝑢𝑢2
2𝑘𝑘𝐵𝐵𝑇𝑇� = �−

2𝑚𝑚𝑚𝑚
2𝑘𝑘𝐵𝐵𝑇𝑇

𝑢𝑢2 + 2𝑢𝑢� 𝑒𝑒−
𝑚𝑚𝑢𝑢2
2𝑘𝑘𝐵𝐵𝑇𝑇 = 0 

 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑔𝑔𝑔𝑔 =  �
2𝑘𝑘𝐵𝐵𝑇𝑇
𝑚𝑚

 

 
(1 point) 
 
In class, we have seen that the frequency with which molecules of speed 𝑢𝑢 collide with a 
wall is proportional to 𝑢𝑢𝑢𝑢(𝑢𝑢). We therefore determine the maximum 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of this 
function.  
 
 

𝑑𝑑�𝑢𝑢𝑢𝑢(𝑢𝑢)�
𝑑𝑑𝑑𝑑

!
=0 

𝑑𝑑
𝑑𝑑𝑑𝑑

�𝑢𝑢3𝑒𝑒−
𝑚𝑚𝑢𝑢2
2𝑘𝑘𝐵𝐵𝑇𝑇� = �−

2𝑚𝑚𝑚𝑚
2𝑘𝑘𝐵𝐵𝑇𝑇

𝑢𝑢3 + 3𝑢𝑢2� 𝑒𝑒−
𝑚𝑚𝑢𝑢2
2𝑘𝑘𝐵𝐵𝑇𝑇 = 0 

 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  �
3𝑘𝑘𝐵𝐵𝑇𝑇
𝑚𝑚

 

 
The ratio of both speeds is 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑔𝑔𝑔𝑔
=  �

3
2
 

 
 
(2 points)  
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5) Reaction dynamics  
 
(8 points total) 
 
a) Potential energy surfaces. Sketch the contour plot of a typical potential energy 
surface of a reaction 
 

AB + C → A + BC 
 

with the reaction constrained to a linear geometry. Here, A, B, and C are atoms. 
Assume that the reaction has a so-called “late” transition state, i.e. at the transition 
state, the configuration of the atoms is more similar to the products than the 
reactants. Draw the minimum energy path of the reaction and indicate where the 
reactants,  the products, and the transition state are located. 
 
(4 points) 

 

 
Contour plot (2 points) 
draw reaction path, indicate reactants, products, and transition state (2 points) 
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b) Unimolecular reactions. Explain qualitatively how the Hinshelwood rate constant 
and the RRK rate constant depend on the size of the molecule.  
 
(4 points) 
 
The Hinshelwood rate constant for the activation of a molecule through a collision 
 

𝑘𝑘1 =
𝑘𝑘−1

(𝑠𝑠 − 1)!
�
𝐸𝐸0
𝑘𝑘𝐵𝐵𝑇𝑇

�
𝑠𝑠−1

𝑒𝑒−
𝐸𝐸0
𝑘𝑘𝐵𝐵𝑇𝑇 

 
 
increases with the number of oscillators 𝑠𝑠 since the higher the number of vibrational 
degrees of freedom, the more energy the molecule stores at thermal equilibrium, so that 
the probability increases that the total energy of a molecule exceeds the threshold energy 
𝐸𝐸0. 
 
(2 points) 
 
In contrast, the RRK rate constant 
 

𝑘𝑘(𝐸𝐸)  =  𝜐𝜐 �
𝐸𝐸 − 𝐸𝐸0
𝐸𝐸

�
𝑠𝑠−1

 
 
decreases with the number of oscillators 𝑠𝑠 since the number of ways to distribute the 
energy 𝐸𝐸 in the molecule increases. This decreases the probability that the energy stored 
in the critical mode exceeds the threshold energy 𝐸𝐸0. 
 
(2 points) 
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6) Bimolecular collisions 
 
(8 points total) 
 
a) In class, we have derived the deflection function for hard spheres collsions by 
first deriving an expression for the trajectory of a particle scattered by an arbitrary 
central potential. 
 
Show that one can also derive this deflection function simply from geometric 
considerations of the collision geometry. Use the trigonometric identities given on 
page 1 to arrive at the expression we obtained in class. 
 
(2 points) 
 
 
 

 
 
 
From the sketch above we can see that the deflection angle is equal to 
 

𝜒𝜒(𝑏𝑏) = 𝜋𝜋 − 2𝜃𝜃 
 
(1 point) 
 
with 
 

sin(𝜃𝜃) =
𝑏𝑏
𝑑𝑑

 
 
which gives us the final result. 
 

𝜒𝜒(𝑏𝑏) = 2 ⋅ �
𝜋𝜋
2
− arcsin �

𝑏𝑏
𝑑𝑑
�� = 2 ⋅ arccos �

𝑏𝑏
𝑑𝑑
� 

 
This is the same expression as we derived in class.  
 
(1 point) 
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b) Consider bimolecular collisions with a central potential  
 

𝑼𝑼(𝒓𝒓) = �
𝒄𝒄
𝒓𝒓
�
𝟏𝟏𝟏𝟏

 
 
where 𝒄𝒄 is a constant and 𝒓𝒓 is the distance between the two particles. 
 
Sketch representative trajectories that illustrate the scattering for small, 
intermediate, and large impact parameters. Sketch the deflection function together 
with the deflection function for a hard spheres collision. Explain qualitatively how 
the differences between these two deflection functions arise. 
 
(3 points) 
  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Since 𝑈𝑈(𝑟𝑟) is a steep, repulse potential, the corresponding deflection function is similar 
to that for hard spheres collisions. At large impact parameters, the deflection function 
asymptotically approaches zero unlike for the hard spheres potential. This is because 
𝑈𝑈(𝑟𝑟)  approaches zero more slowly at large impact parameters than the hard spheres 
potential, which suddenly drops to zero, so that a small deflection occurs even for large 
impact parameters.  
 
(3 points) 
  

Impact parameter
0

π/2

π
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b) Consider bimolecular collisions in a central potential defined by a negative 
Lorentzian 
 
 
 
 
 

𝑼𝑼(𝒓𝒓) = −
𝒄𝒄

𝒓𝒓𝟐𝟐 + �𝟏𝟏𝟐𝟐𝚪𝚪�
𝟐𝟐 

   
 
 
 
 
 
where 𝒄𝒄 is a constant, 𝒓𝒓  is the distance between the two particles, and 𝚪𝚪 relates to 
the width of the Lorentzian. 
 
Sketch representative trajectories that illustrate the scattering for small, 
intermediate, and large impact parameters. Sketch the deflection function together 
with the deflection function for a hard spheres collision. Explain qualitatively how 
the differences between these two deflection functions arise. 
 
(3 points) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since 𝑈𝑈(𝑟𝑟) is an attractive potential, the corresponding deflection function only shows 
negative deflection angles — quite in contrast to scattering in a hard spheres potential, 
which is repulsive and only shows positive deflection angles. This is a consequence of 
the conservation of angular momentum. In the above sketch, the trajectories can only 
curve around the origin in the clockwise sense, which leads to negative deflection angles. 
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The deflection function is zero for large impact parameters. However, as the impact 
parameter decreases, the trajectories are increasingly deflected towards the origin and 
even start to spiral around it. This causes the deflection function to drop to more negative 
values, before it finally goes through a minimum. For very small impact parameters, only 
small deflections occur, since the acceleration that the particles experience for most of 
their trajectory are largely parallel to the direction of travel. If the impact parameter is zero, 
no deflection occurs at all, and the deflection function is zero. 
 
(3 points) 
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