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Dynamics and Kinetics – Final Exam 
 

January 19, 2023 
 

 
 
Name: 
 
 
Total 50 points, 3 h to complete the exam 
 
 
Please note that this is not an open-book exam. You are allowed to use a non-
programmable calculator as well as a formula sheet, A5, single-sided, and 
handwritten. The calculator and formula sheet will be checked during the exam. 
Computers or are not permitted. Do not write with a pencil or a fountain pen that 
can be erased. Please have your photo ID ready.  
 
 
 
∫ 𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = √ 𝜋𝜋

2√ 𝑎𝑎
   (𝑎𝑎 > 0) 

 
∫ 𝑥𝑥𝑥𝑥−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = 1

2𝑎𝑎
   (𝑎𝑎 > 0) 

 
∫ 𝑥𝑥2𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = √𝜋𝜋

4𝑎𝑎
3
2
   (𝑎𝑎 > 0) 

 
∫ 𝑥𝑥2𝑛𝑛𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = (2𝑛𝑛)!√𝜋𝜋

22𝑛𝑛+1𝑛𝑛!𝑎𝑎𝑛𝑛+
1
2
   (𝑎𝑎 > 0) 

 
∫ 𝑥𝑥2𝑛𝑛+1𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑∞
0 = 𝑛𝑛!

2𝑎𝑎𝑛𝑛+1
   (𝑎𝑎 > 0) 

 

Γ(𝑧𝑧 + 1) = � 𝑥𝑥𝑧𝑧𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑
∞

0

 

Γ(𝑧𝑧 + 1) =  𝑧𝑧Γ(𝑧𝑧), for any real 𝑧𝑧 
 
Γ(𝑛𝑛 + 1) = 𝑛𝑛!, for integer 𝑛𝑛 = 0, 1, 2, … 
 

Γ �
1
2
� = √𝜋𝜋 

 
 

𝑘𝑘𝐵𝐵 = 1.38 ⋅ 10−23 J ⋅ K−1 
 
𝑅𝑅 = 8.31 J ⋅ K−1 ⋅ mol−1 
 
𝑁𝑁𝐴𝐴 = 6.02 ⋅ 1023 mol−1 
 
𝑒𝑒 = 1.60 ⋅ 10−19 C 
 
ℎ = 6.63 ⋅ 10−34 J⋅s 
 
𝜖𝜖0 = 8.85 ⋅ 10−12 F ⋅ m−1 
 
𝑐𝑐 = 3.00 ⋅ 108 𝑚𝑚 ⋅ 𝑠𝑠−1 
 
1 𝑎𝑎𝑎𝑎𝑎𝑎 = 1.66 ∙ 10−24 𝑔𝑔 
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1) For the gas-phase reaction of nitric oxide with molecular hydrogen 
 

2 H2 (g) + 2 NO (g) 
𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐�⎯�  N2 (g) + 2 H2O (g) 

 
the observed rate law is 
 

𝒅𝒅[𝐍𝐍𝟐𝟐]
𝒅𝒅𝒅𝒅

= 𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐[H2][𝐍𝐍𝐍𝐍]𝟐𝟐 

 
(8 points total) 
 
 
 
a) The following mechanism has been proposed. 
 

H2 (g) + NO (g) + NO (g) 
𝒌𝒌𝟏𝟏→  N2O (g) + H2O (g) 

 
H2 (g) + N2O (g) 

𝒌𝒌𝟐𝟐→  N2 (g) + H2O (g) 
 
Under which circumstances does this mechanism yield the observed rate law? And 
which expression do you obtain for 𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐 under these circumstances? (3 points) 
 
 
For the rate of production of N2, we find 

 
d[N2]

d𝑡𝑡
= 𝑘𝑘2[H2][N2O] 

 
(1 point) 
 
 
If the second step is much faster than the first, the concentration of N2O will always be 
small, so that we can apply the steady-state approximation. This is reasonable 
assumptions, since N2O is a reactive species. 
 

d[N2O]
d𝑡𝑡

= 𝑘𝑘1[H2][NO]2  − 𝑘𝑘2[H2][N2O] = 0 
 
so that 

[N2O] =
𝑘𝑘1
𝑘𝑘2

[NO]2 

 
(1 points) 
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and 
 

d[N2]
dt

= 𝑘𝑘1[H2][NO]2 

 
which agrees with the observed rate law, with 𝑘𝑘obs = 𝑘𝑘1.  
 
(1 point) 
 
 
b) A different mechanism has been proposed as well.  
 

NO (g) + NO (g) 
𝒌𝒌𝟏𝟏
⇌
𝒌𝒌−𝟏𝟏

  N2O2 (g) 

 
H2 (g) + N2O2 (g)  

𝒌𝒌𝟐𝟐→  N2O (g) + H2O (g) 
 

H2 (g) + N2O (g) 
𝒌𝒌𝟑𝟑→  N2 (g) + H2O (g) 

 
Under which circumstances does this mechanism yield the observed rate law? And 
which expression do you obtain for 𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐 under these circumstances? (4 points) 
 
 
For the rate of production of N2, we find 

 
d[N2]

dt
= 𝑘𝑘3[H2][N2O] 

 
(1 point) 
 
If the third step is much faster than the second, the concentration of N2O will always be 
small, so that we can apply the steady-state approximation. 
 
 

d[N2O]
d𝑡𝑡

= 𝑘𝑘2[H2][N2O2]  −  𝑘𝑘3[H2][N2O]  = 0  
 
so that 

[N2O] =
𝑘𝑘2
𝑘𝑘3

[N2O2] 

 
After substitution of the concentration of N2O into the rate of N2 production, we obtain 
 

d[N2]
d𝑡𝑡

= 𝑘𝑘2[H2][N2O2]  
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(1 point) 

 
 

If we moreover assume that a pre-equilibrium exists in the first step, we can write 
 
 

𝑘𝑘1
𝑘𝑘−1

=
[N2O2]
[NO]2  

 
and 

[N2O2] =
𝑘𝑘1
𝑘𝑘−1

[NO]2 

 
(1 point) 
 
After substitution of the concentration of N2O2 into the rate of N2 production, we obtain 
 

d[N2]
d𝑡𝑡

=
𝑘𝑘2𝑘𝑘1
𝑘𝑘−1

[H2][NO]2 

 
so that the observed rate constant becomes 𝑘𝑘obs = 𝑘𝑘2𝑘𝑘1/𝑘𝑘−1.  
 
(1 point) 
 
 
c) Which of the two proposed mechanisms is more likely to be correct? Explain 
your reasoning. (1 point) 
 
It seems more likely that the mechanism in (b) is correct, since it only involves 
biomolecular reactions, whereas the mechanism of (a) includes a termolecular reaction, 
which is unlikely to occur.  
 
(1 point)  
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2) Describe an algorithm (no need to write proper code) that uses the stochastic 
method to simulate an enzymatically catalyzed reaction that follows the Michaelis-
Menten mechanism. (8 points) 
 
The Michaelis-Menten mechanism involves the following reaction sequence 
 

E + S 
𝑘𝑘1
⇌
𝑘𝑘−1

 ES 
𝑘𝑘2→  E + P 

 
The algorithm consists of two steps, which are repeated for the duration of the simulation. 
 
In the first step, the time interval Δ𝑡𝑡 is determined after which the next reaction occurs. 
 
The probability that none of the three reactions has occurred within a time interval Δ𝑡𝑡 is: 
 

𝑝𝑝𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) =  𝑒𝑒−(𝑘𝑘1𝑛𝑛E𝑛𝑛S+𝑛𝑛ES(𝑘𝑘−1+𝑘𝑘2))𝛥𝛥𝛥𝛥 = 𝑒𝑒−𝛼𝛼𝛼𝛼𝛼𝛼 
 
with 
 

𝛼𝛼 =  𝑘𝑘1𝑛𝑛E𝑛𝑛S + 𝑛𝑛ES(𝑘𝑘−1 + 𝑘𝑘2) 
 
and 𝑛𝑛𝐸𝐸, 𝑛𝑛𝑆𝑆, and 𝑛𝑛𝐸𝐸𝐸𝐸 the number of molecules of E, S, and ES respectively. Moreover, we 
will use the variable 𝑛𝑛𝑃𝑃 to describe the number of product molecules. 
 
 
(3 points) 
 
 
The probability 𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)𝑑𝑑𝑑𝑑 for a reaction to occur in a short time interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑] is 
therefore equal to the change in the probability of no reaction occurring 
 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)𝑑𝑑𝑑𝑑 =  −
𝑝𝑝𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)

𝑑𝑑𝑑𝑑
 𝑑𝑑𝑑𝑑 =  𝛼𝛼𝑒𝑒−𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑 

 
The cumulative reaction probability (i.e., the probability that any reaction has occurred 
between 0 and 𝑡𝑡) is therefore 
 

𝑝𝑝𝑟𝑟(𝑡𝑡) =  � 𝛼𝛼𝑒𝑒−𝛼𝛼𝛼𝛼𝑑𝑑𝑑𝑑
𝑡𝑡

0
= 1 −  𝑒𝑒−𝛼𝛼𝛼𝛼 = 1 − 𝑝𝑝𝑛𝑛𝑛𝑛_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) 

 
(1 point) 
 
 
We equate this cumulative probability to a random number 𝑟𝑟1 between 0 and 1 and solve 
for Δ𝑡𝑡 in order to determine the time interval Δ𝑡𝑡 after which the next reaction occurs. 
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𝛥𝛥𝛥𝛥 =  
1
𝛼𝛼

ln �
1

1 − 𝑟𝑟1
�  

 
which is equivalent to 
 

𝛥𝛥𝛥𝛥 =  
1
𝛼𝛼

ln �
1
𝑟𝑟1
�  

 
(1 point) 
 
In the second step of the algorithm, one determines which of the three reactions has 
occurred from a second random number 𝑟𝑟2 between 0 and 1 as follows. 
 

Reaction   

⎩
⎪
⎨

⎪
⎧ 1 𝑟𝑟2 <  𝑘𝑘1𝑛𝑛E𝑛𝑛s

𝛼𝛼

−1 has occurred if 𝑘𝑘1𝑛𝑛E𝑛𝑛s
𝛼𝛼

≤ 𝑟𝑟2 <  𝑘𝑘1𝑛𝑛E𝑛𝑛s
𝛼𝛼

+ 𝑘𝑘−1𝑛𝑛ES
𝛼𝛼

2 𝑟𝑟2 ≥  𝑘𝑘1𝑛𝑛E𝑛𝑛s
𝛼𝛼

+ 𝑘𝑘−1𝑛𝑛ES
𝛼𝛼

  

 
 
(2 points) 
 
The numbers of molecules 𝑛𝑛E, 𝑛𝑛S, 𝑛𝑛ES, and 𝑛𝑛P are then updated accordingly, and the time 
variable 𝑡𝑡 is incremented by 𝛥𝛥𝛥𝛥. The two steps are then repeated for the duration of the 
simulation, yielding the numbers of molecules 𝑛𝑛E, 𝑛𝑛S, 𝑛𝑛ES, and 𝑛𝑛P as a function of time 𝑡𝑡. 
 
(1 point) 
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3) Consider the following reversible reaction:  
 

A + X 
𝒌𝒌𝟏𝟏
⇌
𝒌𝒌−𝟏𝟏

 2 X 

 
(8 points total) 
 
a) Derive an expression for the relative concentrations of A and X at equilibrium. 
(1 point) 
 
At equilibrium the rates of the forward and backward reactions are equal 
 

𝑘𝑘1[A]eq[X]eq = 𝑘𝑘−1[X]eq2  

 
 
so that 
 

[X]eq =
𝑘𝑘1
𝑘𝑘−1

[A]eq 

 
 
(1 point) 
 
 
b) Assume that for a given set of conditions, the concentration of A barely changes 
over the course of the reaction, so that it can be treated as constant to good 
approximation. Using this approximation, calculate the concentration of X as a 
function of time. (6 points) 
 
 
For clarity, we denote 
 

[X] =  x 
 
and 
 

[A] = [A]0 = a 
 
where we have used the approximation that the concentration of A is constant. 
 
The rate equation becomes 
 
 

dx
d𝑡𝑡

= 𝑘𝑘1ax − 𝑘𝑘−1x2 
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so that 
 

�
dx

𝑘𝑘1ax − 𝑘𝑘−1x2
xt

x0
= � d𝜏𝜏

𝑡𝑡

0
= 𝑡𝑡 

 
 
(1 point) 
 
 
We use the method of partial fractions to integrate the left side. 
 
 

�
dx

𝑘𝑘1ax − 𝑘𝑘−1x2
xt

x0
= −�

𝐴𝐴
(𝑘𝑘−1x − 𝑘𝑘1a) +

𝐵𝐵
x

dx
xt

x0
 

 
Identifying 𝐴𝐴 =  𝑘𝑘−1/𝑘𝑘1a and 𝐵𝐵 =  −1/𝑘𝑘1a gives us the following integral. 
 

−�
𝑘𝑘−1

�𝑘𝑘−1𝑘𝑘1a  x − 1�
−

1
𝑘𝑘1a x

dx
xt

x0
=

1
𝑘𝑘1a

 �ln(𝑥𝑥) − ln �
𝑘𝑘−1
𝑘𝑘1a

 x − 1��
x0

xt
 

 

−1
𝑘𝑘1a

 �ln �
𝑘𝑘−1
𝑘𝑘1a

 −
1
x
��
x0

xt
=  

−1
𝑘𝑘1a

 ln�
𝑘𝑘−1  − 𝑘𝑘1a

xt
𝑘𝑘−1  − 𝑘𝑘1a

x0

� 

 
Alternatively, we can use the following trick. 
 
 

�
dx

𝑘𝑘1ax − 𝑘𝑘−1x2
xt

x0
= −�

dx

�𝑘𝑘−1 −
𝑘𝑘1a

x � x2

xt

x0
 

 
Using the change of variables 𝑢𝑢 =  𝑘𝑘−1 −

𝑘𝑘1a
x

 , 𝑑𝑑𝑑𝑑 =  𝑘𝑘1a
x2
𝑑𝑑x and changing the integration 

bounds.  
 
 
  

−�
dx

�𝑘𝑘−1 −
𝑘𝑘1a

x � x2

xt

x0
= −

1
𝑘𝑘1a

�
d𝑢𝑢
𝑢𝑢

𝑢𝑢𝑡𝑡

𝑢𝑢0
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−1
𝑘𝑘1a

�
d𝑢𝑢
𝑢𝑢

𝑢𝑢𝑡𝑡

𝑢𝑢0
=
−1
𝑘𝑘1a

[𝑙𝑙𝑙𝑙(𝑢𝑢)]𝑢𝑢0
𝑢𝑢𝑡𝑡 =

−1
𝑘𝑘1a

𝑙𝑙𝑙𝑙 �
𝑢𝑢𝑡𝑡
𝑢𝑢0
� 

 
Undo substitution, 
 

−1
𝑘𝑘1a

𝑙𝑙𝑙𝑙 �
𝑢𝑢𝑡𝑡
𝑢𝑢0
� =  

−1
𝑘𝑘1a

𝑙𝑙𝑙𝑙�
𝑘𝑘−1 −

𝑘𝑘1a
xt

𝑘𝑘−1 −
𝑘𝑘1a
x0

� 

 
(3 points) 
 
Combining the left-hand side with the right-hand side:  
 

1
𝑘𝑘1a

𝑙𝑙𝑙𝑙 �
𝑘𝑘−1 −

𝑘𝑘1a
xt

𝑘𝑘−1 −
𝑘𝑘1a
x0

� = −𝑡𝑡 

 
𝑘𝑘−1 −

𝑘𝑘1a
xt

𝑘𝑘−1 −
𝑘𝑘1a
x0

= 𝑒𝑒−𝑘𝑘1a𝑡𝑡 

 
 

𝑘𝑘−1 −
𝑘𝑘1a
xt

= �𝑘𝑘−1 −
𝑘𝑘1a
𝑥𝑥0
� 𝑒𝑒−𝑘𝑘1a𝑡𝑡 

 

𝑥𝑥𝑡𝑡  =
𝑘𝑘1a

𝑘𝑘−1 − �𝑘𝑘−1 −
𝑘𝑘1a
x0
� 𝑒𝑒−𝑘𝑘1a𝑡𝑡

 

 
(2 points) 
 
 
  



Dynamics and Kinetics – Final Exam, Jan. 19, 2023 
 

10 

c) Under which circumstances is the approximation justified that the concentration 
of A is constant? (1 point) 
 
The approximation is good if A is provided in large excess and the ratio of the rate 
constants 𝑘𝑘1

𝑘𝑘−1
 is small, so that barely any A is consumed before the reactive mixture 

reaches equilibrium. 
 
(1 point) 
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4) Transition State Theory. (11 points total) 
 
a) The contour plot below shows the potential energy surface of the reaction  
 

AB + C → A + BC 
 
with the reaction constrained to a linear geometry. Here, A, B, and C are atoms, and 
rAB and rBC are interatomic distances. 
 
Draw the minimum energy path of the reaction and indicate where the reactants 
and the products are located. 
 
Draw the path on the potential energy surface that the system follows as the 
reactant AB molecule undergoes bond vibrations (without the distance to the C 
atom changing). 
 
Indicate the transition state of the reaction and provide a definition of the transition 
state. At the transition state, what are the relative distances of the three atoms? 
 
(5 points) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
minimum energy path with location of reactants and products (1 point) 
 
AB bond vibration (1 point) 
 
location of transition state (1 point) 
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The transition state is a saddle point, with a maximum along the reaction coordinate (the 
minimum energy path), and a minimum along all other normal modes. (1 point) 
 
The transition state is asymmetric, with the AB distance shorter than the BC distance. 
(1 point) 
 
 
b) Use the transition state theory to estimate the rate constant of the reaction 
 

F + H2 → HF + H 
 
at 300 K. 
 
The activation energy of the reaction is 1.7 kJ/mol. A fluorine atom has a mass of 
19 amu, and a hydrogen atom of 1 amu. The H2 molecule has a rotational constant 
of B = 61.6 cm-1 and a vibrational frequency corresponding to 𝞶𝞶 = 4395 cm-1. The 
transition state has a rotational constant of B‡ = 2.3 cm-1 and vibrational 
frequencies corresponding to 𝞶𝞶stretch = 4007 cm-1, νbend,1 = 392 cm-1, and 
𝞶𝞶bend,2 = 397 cm-1. (6 points) 
 
 
The TST rate constant is given by 
 

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑁𝑁𝐴𝐴
𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

𝑞𝑞𝑉𝑉
‡

𝑞𝑞𝑉𝑉,𝐹𝐹 𝑞𝑞𝑉𝑉,𝐻𝐻2
𝑒𝑒− 𝐸𝐸0𝑘𝑘𝐵𝐵𝑇𝑇 

 
(1 point) 
 
 
We calculate the partition functions for the reactants and the transition state. 
 
Reactants. 
 
F :   𝑞𝑞𝑉𝑉,F = 𝑞𝑞𝑉𝑉,F,𝑡𝑡𝑡𝑡 = 1

ℎ3
(2𝜋𝜋 𝑚𝑚F𝑘𝑘𝐵𝐵𝑇𝑇)3/2 =  8.06 ⋅ 1031 m−3 

 
 
H2:   𝑞𝑞𝑉𝑉,H2 = 𝑞𝑞𝑉𝑉,H2,𝑡𝑡𝑡𝑡 ⋅ 𝑞𝑞H2,𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝑞𝑞H2,𝑣𝑣𝑣𝑣𝑣𝑣 =  1.21 ⋅ 1026 m−3  
 
  

𝑞𝑞𝑉𝑉,H2,𝑡𝑡𝑡𝑡 =  
1
ℎ3
�2𝜋𝜋 𝑚𝑚H2𝑘𝑘𝐵𝐵𝑇𝑇�

3/2
=  2.75 ⋅ 1030 m−3 

 

 𝑞𝑞H2,𝑟𝑟𝑟𝑟𝑟𝑟  =
1
2
𝑘𝑘𝐵𝐵𝑇𝑇
ℎ𝑐𝑐𝐵𝐵H2

=  1.69 
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𝑞𝑞H2,𝑣𝑣𝑣𝑣𝑣𝑣  =
𝑒𝑒− 𝑥𝑥/2

1 −  𝑒𝑒− 𝑥𝑥 = 2.60 ⋅ 10−5 ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑥𝑥 =  
ℎ 𝜈𝜈 𝑐𝑐
𝑘𝑘𝐵𝐵𝑇𝑇

 

 
 
(2 points) 
 
Transition state. 
 

𝑞𝑞𝑉𝑉
‡ = 𝑞𝑞𝑉𝑉,𝑡𝑡𝑡𝑡

‡ ⋅ 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟
‡ ⋅ 𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣

‡ =  1.17 ⋅ 1029 m−3 
 

𝑞𝑞𝑉𝑉,𝑡𝑡𝑡𝑡
‡ =  

1
ℎ3

(2𝜋𝜋 𝑚𝑚‡𝑘𝑘𝐵𝐵𝑇𝑇)3/2 =  9.37 ⋅ 1031 m−3 
 

𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟
‡  =

𝑘𝑘𝐵𝐵𝑇𝑇
ℎ𝑐𝑐𝐵𝐵‡ =  90.50 

 

𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣
‡  =

𝑒𝑒−𝑥𝑥1/2 ∙ 𝑒𝑒−𝑥𝑥2/2 ∙  𝑒𝑒−𝑥𝑥3/2

(1 − 𝑒𝑒−𝑥𝑥1)(1 − 𝑒𝑒−𝑥𝑥2)(1− 𝑒𝑒−𝑥𝑥3) = 1.37 ⋅ 10−5  

 

with 𝑥𝑥1 =  
ℎ𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑐𝑐
𝑘𝑘𝐵𝐵𝑇𝑇

,  𝑥𝑥2 =  
ℎ𝜈𝜈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,1𝑐𝑐
𝑘𝑘𝐵𝐵𝑇𝑇

,𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥3 =  
ℎ𝜈𝜈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,2𝑐𝑐
𝑘𝑘𝐵𝐵𝑇𝑇

 

 
 
(2 points) 
 
This yields the TST rate constant. 
 
 

𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑁𝑁𝐴𝐴
𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

𝑞𝑞𝑉𝑉
‡

𝑞𝑞𝑉𝑉,F 𝑞𝑞𝑉𝑉,H2
𝑒𝑒− 𝐸𝐸0𝑘𝑘𝐵𝐵𝑇𝑇 

 

= 6.02 ⋅ 1023  
1.38 ⋅ 10−23 ⋅ 300

6.63 ⋅ 10−34 
1.17 ⋅ 1029

8.06 ⋅ 1031 ⋅ 1.21 ⋅ 1026
𝑒𝑒−1700/(8.314⋅300)𝑚𝑚3𝑠𝑠−1𝑚𝑚𝑚𝑚𝑚𝑚−1 

 
=  2.27 ⋅ 107 𝑚𝑚3𝑠𝑠−1𝑚𝑚𝑚𝑚𝑚𝑚−1 =  2.27 ⋅ 1010 𝑀𝑀−1𝑠𝑠−1  

 
(1 point) 
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5) The reaction cross section of a bimolecular gas-phase reaction has the following 
dependence on the collision energy 𝑬𝑬 
 

𝝈𝝈𝑹𝑹(𝑬𝑬) = �
𝟎𝟎 𝐟𝐟𝐟𝐟𝐟𝐟 𝑬𝑬 < 𝑬𝑬∗

𝝅𝝅𝒅𝒅𝟐𝟐𝒑𝒑
√𝑬𝑬 − 𝑬𝑬∗

𝑬𝑬 √𝑬𝑬∗ 𝐟𝐟𝐟𝐟𝐟𝐟 𝑬𝑬 ≥ 𝑬𝑬∗
 

 
where 𝝅𝝅𝒅𝒅𝟐𝟐 is the hard-spheres collision cross section, 𝒑𝒑 is a steric factor, and 𝑬𝑬∗ 
is a threshold energy, below which the reaction cross section drops to zero. 
 
Determine the thermal rate coefficient 𝒌𝒌(𝑻𝑻). (7 points) 
 
To obtain the thermal rate coefficient 𝑘𝑘(𝑇𝑇) = 〈𝜎𝜎𝑅𝑅(𝐸𝐸)𝑣𝑣(𝐸𝐸)〉, we average over a thermal 
population of molecules as given by the Maxwell-Boltzmann distribution 𝐹𝐹(𝑣𝑣) for the 
relative speed. 
 
 

𝑘𝑘(𝑇𝑇) =  � 𝜎𝜎𝑅𝑅(𝐸𝐸)𝑣𝑣 ∙ 𝐹𝐹(𝑣𝑣)𝑑𝑑𝑑𝑑
∞

0

=  � 𝜎𝜎𝑅𝑅(𝐸𝐸)𝑣𝑣 ∙ 4𝜋𝜋 �
𝜇𝜇

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
�
3
2
𝑣𝑣2𝑒𝑒−

𝜇𝜇𝑣𝑣2
2𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑑𝑑

∞

0

 

 
 
(2 points) 
 
 
We transform the integral with 𝐸𝐸 = 1

2
𝜇𝜇𝑣𝑣2 and 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑

𝜇𝜇𝜇𝜇
  

 

𝑘𝑘(𝑇𝑇) =
1
𝑘𝑘𝐵𝐵𝑇𝑇

�
8

𝜋𝜋𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
�
1
2
� 𝜎𝜎𝑅𝑅(𝐸𝐸)𝐸𝐸𝑒𝑒−

𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑑𝑑

∞

0

=
1
𝑘𝑘𝐵𝐵𝑇𝑇

�
8

𝜋𝜋𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
�
1
2
� 𝜋𝜋𝑑𝑑2𝑝𝑝√𝐸𝐸 − 𝐸𝐸∗√𝐸𝐸∗𝑒𝑒−

𝐸𝐸
𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑑𝑑

∞

𝐸𝐸∗

 

 
where we have adjusted the integral bounds to reflect that the reaction cross section is 
zero for 𝐸𝐸 < 𝐸𝐸∗. 
 
 
(2 points) 
 
 
A change of variables with 𝜖𝜖 = 𝐸𝐸 − 𝐸𝐸∗ and 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 yields 
 

𝑘𝑘(𝑇𝑇) = 𝜋𝜋𝑑𝑑2𝑝𝑝
1
𝑘𝑘𝐵𝐵𝑇𝑇

�
8

𝜋𝜋𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
�
1
2
√𝐸𝐸∗𝑒𝑒−

𝐸𝐸∗
𝑘𝑘𝐵𝐵𝑇𝑇 � √𝜖𝜖𝑒𝑒

− 𝜖𝜖
𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑑𝑑

∞

0
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We transform the integral with 𝜖𝜖′ = 𝜖𝜖
𝑘𝑘𝐵𝐵𝑇𝑇

 and 𝑑𝑑𝑑𝑑 = 𝑘𝑘𝐵𝐵𝑇𝑇𝑇𝑇𝑇𝑇′ 
 

� √𝜖𝜖𝑒𝑒
− 𝜖𝜖
𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑑𝑑

∞

0

= (𝑘𝑘𝐵𝐵𝑇𝑇)
3
2 � �𝜖𝜖′𝑒𝑒−𝜖𝜖′𝑑𝑑𝑑𝑑′
∞

0

= (𝑘𝑘𝐵𝐵𝑇𝑇)
3
2
√𝜋𝜋
2

 

 
where we have used the gamma function in the last step. We finally obtain the thermal 
rate constant 
 

𝑘𝑘(𝑇𝑇) = 𝜋𝜋𝑑𝑑2𝑝𝑝�
2𝐸𝐸∗

𝜇𝜇
𝑒𝑒−

𝐸𝐸∗
𝑘𝑘𝐵𝐵𝑇𝑇 

 
 
(3 points) 
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6) Derive the relative speed distribution of two particles in a two-dimensional gas. 
In order to do so, follow these steps. First write down the combined velocity 
distribution of two particles, then transform into center of mass coordinates. 
Integrate out the center-of-mass part to obtain the distribution of the relative 
velocities. Finally, transform into polar coordinates and integrate out the angular 
part to obtain the relative speed distribution. (8 points) 
 
 
Starting with a one-dimensional velocity distribution  
 

𝑓𝑓(𝑣𝑣𝑖𝑖)𝑑𝑑𝑣𝑣𝑖𝑖 =  �
𝑚𝑚

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
 𝑒𝑒−

𝑚𝑚𝑣𝑣𝑖𝑖
2

2𝑘𝑘𝐵𝐵𝑇𝑇𝑑𝑑𝑣𝑣𝑖𝑖 

 
 
we can write down the two-dimensional distribution for two particles. 
 

𝑓𝑓�𝑣𝑣𝐴𝐴,𝑥𝑥, 𝑣𝑣𝐴𝐴,𝑦𝑦, 𝑣𝑣𝐵𝐵,𝑥𝑥, 𝑣𝑣𝐵𝐵,𝑦𝑦�𝑑𝑑𝑣𝑣𝐴𝐴,𝑥𝑥𝑑𝑑𝑣𝑣𝐴𝐴,𝑦𝑦𝑑𝑑𝑣𝑣𝐵𝐵,𝑥𝑥𝑑𝑑𝑣𝑣𝐵𝐵,𝑦𝑦
=  𝑓𝑓�𝑣𝑣𝐴𝐴,𝑥𝑥)𝑓𝑓�𝑣𝑣𝐴𝐴,𝑦𝑦�𝑓𝑓(𝑣𝑣𝐵𝐵,𝑥𝑥)𝑓𝑓(𝑣𝑣𝐵𝐵,𝑦𝑦�𝑑𝑑𝑣𝑣𝐴𝐴,𝑥𝑥𝑑𝑑𝑣𝑣𝐴𝐴,𝑦𝑦𝑑𝑑𝑣𝑣𝐵𝐵,𝑥𝑥𝑑𝑑𝑣𝑣𝐵𝐵,𝑦𝑦 

=
𝑚𝑚𝐴𝐴𝑚𝑚𝐵𝐵

(2𝑘𝑘𝐵𝐵𝑇𝑇)2 𝑒𝑒
−
𝑚𝑚𝐴𝐴(𝑣𝑣𝐴𝐴,𝑥𝑥

2 +𝑣𝑣𝐴𝐴,𝑦𝑦
2 )

2𝑘𝑘𝐵𝐵𝑇𝑇 𝑒𝑒−
𝑚𝑚𝐵𝐵(𝑣𝑣𝐵𝐵,𝑥𝑥

2 +𝑣𝑣𝐵𝐵,𝑦𝑦
2 )

2𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑣𝑣𝐴𝐴,𝑥𝑥𝑑𝑑𝑣𝑣𝐴𝐴,𝑦𝑦𝑑𝑑𝑣𝑣𝐵𝐵,𝑥𝑥𝑑𝑑𝑣𝑣𝐵𝐵,𝑦𝑦 

 
 
(2 points) 
 
We transform into center of mass coordinates using 
 

⎩
⎪
⎨

⎪
⎧𝑣⃑𝑣𝐴𝐴 =  𝑣⃑𝑣𝑐𝑐𝑐𝑐 +

𝜇𝜇𝑣⃑𝑣𝐴𝐴𝐴𝐴
𝑚𝑚𝐴𝐴

𝑣⃑𝑣𝐵𝐵 =  𝑣⃑𝑣𝑐𝑐𝑐𝑐 −
𝜇𝜇𝑣⃑𝑣𝐴𝐴𝐴𝐴
𝑚𝑚𝐵𝐵

 

 
Where 𝑣⃑𝑣𝑐𝑐𝑐𝑐, 𝑣⃑𝑣𝐴𝐴𝐴𝐴, and 𝜇𝜇 are the velocity of the center of mass, the relative velocity and the 
reduced mass, respectively. 
 
(1 point) 
 
We transform the differentials 
 

𝑑𝑑𝑣⃑𝑣𝐴𝐴𝑑𝑑𝑣⃑𝑣𝐵𝐵 = �
�𝑑𝑑𝑑𝑑𝑑𝑑 ��

𝜕𝜕𝑣⃑𝑣𝐴𝐴
𝜕𝜕𝑣⃑𝑣𝑐𝑐𝑐𝑐

𝜕𝜕𝑣⃑𝑣𝐴𝐴
𝜕𝜕𝑣⃑𝑣𝐴𝐴𝐴𝐴

𝜕𝜕𝑣⃑𝑣𝐵𝐵
𝜕𝜕𝑣⃑𝑣𝑐𝑐𝑐𝑐

𝜕𝜕𝑣⃑𝑣𝐵𝐵
𝜕𝜕𝑣⃑𝑣𝐴𝐴𝐴𝐴

���
� 𝑑𝑑𝑣⃑𝑣𝑐𝑐𝑐𝑐𝑑𝑑𝑣⃑𝑣𝐴𝐴𝐴𝐴 =  ��𝑑𝑑𝑑𝑑𝑑𝑑 �

1
𝜇𝜇
𝑚𝑚𝐴𝐴

1 −
𝜇𝜇
𝑚𝑚𝐵𝐵

��� 𝑑𝑑𝑣⃑𝑣𝑐𝑐𝑐𝑐𝑑𝑑𝑣⃑𝑣𝐴𝐴𝐴𝐴 =  𝑑𝑑𝑣⃑𝑣𝑐𝑐𝑐𝑐𝑑𝑑𝑣⃑𝑣𝐴𝐴𝐴𝐴 
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to obtain 
 
 
𝑓𝑓�𝑣𝑣𝐴𝐴,𝑥𝑥, 𝑣𝑣𝐴𝐴,𝑦𝑦, 𝑣𝑣𝐵𝐵,𝑥𝑥, 𝑣𝑣𝐵𝐵,𝑦𝑦�𝑑𝑑𝑣𝑣𝐴𝐴,𝑥𝑥𝑑𝑑𝑣𝑣𝐴𝐴,𝑦𝑦𝑑𝑑𝑣𝑣𝐵𝐵,𝑥𝑥𝑑𝑑𝑣𝑣𝐵𝐵,𝑦𝑦

=
𝑚𝑚𝐴𝐴𝑚𝑚𝐵𝐵

(2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇)2  𝑒𝑒−
(𝑚𝑚𝐴𝐴+𝑚𝑚𝐵𝐵)�𝑣𝑣𝑐𝑐𝑐𝑐,𝑥𝑥

2 +𝑣𝑣𝑐𝑐𝑐𝑐,𝑦𝑦
2 �+𝜇𝜇�𝑣𝑣𝐴𝐴𝐴𝐴,𝑥𝑥2 + 𝑣𝑣𝐴𝐴𝐴𝐴,𝑦𝑦

2 �
2𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑣𝑣𝑐𝑐𝑐𝑐,𝑥𝑥𝑑𝑑𝑣𝑣𝑐𝑐𝑐𝑐,𝑦𝑦𝑑𝑑𝑣𝑣𝐴𝐴𝐴𝐴,𝑥𝑥𝑑𝑑𝑣𝑣𝐴𝐴𝐴𝐴,𝑦𝑦 

 
 
(2 points) 
 
We integrate out the center of mass coordinates, realizing that the integral is over a 
velocity distribution of a particle with mass 𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵, where the distribution function has 
been devided by 𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵. 
 

�
1

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
 𝑒𝑒−

(𝑚𝑚𝐴𝐴+𝑚𝑚𝐵𝐵)�𝑣𝑣𝑐𝑐𝑐𝑐,𝑥𝑥
2 +𝑣𝑣𝑐𝑐𝑐𝑐,𝑦𝑦

2 �
2𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑣𝑣𝑐𝑐𝑐𝑐,𝑥𝑥𝑑𝑑𝑣𝑣𝑐𝑐𝑐𝑐,𝑦𝑦

∞

−∞

=
1

𝑚𝑚𝐴𝐴 + 𝑚𝑚𝐵𝐵
 

 
 
(1 point) 
 
We now need to transform the relative velocity distribution to polar coordinates, in order 
to average over the radial distribution part. 
 

�
𝑣𝑣𝐴𝐴𝐴𝐴,𝑥𝑥 =  𝑣𝑣 cos (𝜃𝜃)
𝑣𝑣𝐴𝐴𝐴𝐴,𝑦𝑦 =  𝑣𝑣 sin (𝜃𝜃) 

 
With the change of variables  𝑑𝑑𝑣𝑣𝐴𝐴𝐴𝐴,𝑥𝑥𝑑𝑑𝑣𝑣𝐴𝐴𝐴𝐴,𝑦𝑦 = 𝑣𝑣 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑, we obtain 
 
 

𝜇𝜇
2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

 𝑒𝑒−
𝜇𝜇�𝑣𝑣𝐴𝐴𝐴𝐴,𝑥𝑥

2  + 𝑣𝑣𝐴𝐴𝐴𝐴,𝑦𝑦
2 �

2𝑘𝑘𝐵𝐵𝑇𝑇 𝑑𝑑𝑣𝑣𝐴𝐴𝐴𝐴,𝑥𝑥𝑑𝑑𝑣𝑣𝐴𝐴𝐴𝐴,𝑦𝑦 =
𝜇𝜇

2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇
 𝑒𝑒−

𝜇𝜇𝑣𝑣2
2𝑘𝑘𝐵𝐵𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

 
 
Integrating over the radial part yields the relative velocity distribution of a two-dimensional 
gas 
 

𝜇𝜇
2𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

 𝑒𝑒−
𝜇𝜇𝑣𝑣2
2𝑘𝑘𝐵𝐵𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣� 𝑑𝑑𝑑𝑑

2𝜋𝜋

0

=
𝜇𝜇
𝑘𝑘𝐵𝐵𝑇𝑇

 𝑒𝑒−
𝜇𝜇𝑣𝑣2
2𝑘𝑘𝐵𝐵𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣  

 
 
(2 points) 


