Dynamics and Kinetics — Final Exam

January 19, 2023

Name:
Total 50 points, 3 h to complete the exam

Please note that this is not an open-book exam. You are allowed to use a non-
programmable calculator as well as a formula sheet, A5, single-sided, and
handwritten. The calculator and formula sheet will be checked during the exam.
Computers or are not permitted. Do not write with a pencil or a fountain pen that
can be erased. Please have your photo ID ready.
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1) For the gas-phase reaction of nitric oxide with molecular hydrogen

kobs

2 Hz2 (g) + 2 NO (g) -3 N2 (g) + 2 H20 (g)
the observed rate law is

d[N,]

dt = kobs[HZ] [NO]Z

(8 points total)

a) The following mechanism has been proposed.
k
Hz (g) + NO (g) + NO (g) - N20 (g) + H20 (g)

k
Hz (g) + N2O (g) > Nz (g) + H20 (g)
Under which circumstances does this mechanism yield the observed rate law? And
which expression do you obtain for k,;,; under these circumstances? (3 points)
For the rate of production of N2, we find

d[N,]
dt

= k,[H;][N, 0]

(1 point)

If the second step is much faster than the first, the concentration of N2O will always be
small, so that we can apply the steady-state approximation. This is reasonable
assumptions, since N20 is a reactive species.

d[N,0]
dt

= ky[H2][NO]? — k3[H,][N,0] = 0

so that
ky
[N,0] = —[NO]?
k;,

(1 points)



and

d[N,]
dt

= k,[H;] [NO]Z

which agrees with the observed rate law, with kg, = k;.

(1 point)

b) A different mechanism has been proposed as well.
k1

NO (g) + NO (g) = N202(g)
k_4

Hz (g) * N202 (9) 3 N2O (g) + HzO (g)

Hz (g) * N20 (g) 3 Nz (g) + Hz0 (9)

Under which circumstances does this mechanism yield the observed rate law? And
which expression do you obtain for k,;,; under these circumstances? (4 points)

For the rate of production of N2, we find

d[N,]
dt

= k3[H,][N;0]

(1 point)
If the third step is much faster than the second, the concentration of N2O will always be

small, so that we can apply the steady-state approximation.

d[N,0]
dt

= kz[H;][N;0,] — k3[H][N,0] =0

so that

k,
[Nzo] = k_3 [Nzoz]

After substitution of the concentration of N20 into the rate of N2 production, we obtain

d[N
Sl = K, [H,][N,0,]



(1 point)

If we moreover assume that a pre-equilibrium exists in the first step, we can write

ﬁ _ [N20]
k-, [NOJ?
and
k, 5
[Nzoz] = k_ [NO]
-1
(1 point)

After substitution of the concentration of N20:2 into the rate of N2 production, we obtain

dIN;] _ kg
= [HNoP?

so that the observed rate constant becomes kg, = ko kq/k_1.

(1 point)

c) Which of the two proposed mechanisms is more likely to be correct? Explain
your reasoning. (1 point)

It seems more likely that the mechanism in (b) is correct, since it only involves
biomolecular reactions, whereas the mechanism of (a) includes a termolecular reaction,

which is unlikely to occur.

(1 point)



2) Describe an algorithm (no need to write proper code) that uses the stochastic
method to simulate an enzymatically catalyzed reaction that follows the Michaelis-
Menten mechanism. (8 points)

The Michaelis-Menten mechanism involves the following reaction sequence
k, s
E+S = ES->E+P
k_y
The algorithm consists of two steps, which are repeated for the duration of the simulation.

In the first step, the time interval At is determined after which the next reaction occurs.

The probability that none of the three reactions has occurred within a time interval At is:

pno_reaction(t) = e~ (kimenstngs(k-1+k2)AL = p-adt

with
a = klnEnS + nEs(k_l + kZ)

and ng, ng, and ngs the number of molecules of E, S, and ES respectively. Moreover, we
will use the variable np to describe the number of product molecules.

(3 points)

The probability p,eqction(t)dt for a reaction to occur in a short time interval [¢t,t + dt] is
therefore equal to the change in the probability of no reaction occurring

_ pno_reaction (t)

e dt = ae %dt

Preaction (t) dt =

The cumulative reaction probability (i.e., the probability that any reaction has occurred
between 0 and t) is therefore

t
p(t) = ] ae~¥dt =1— e % =1~ pno reaction(t)
0

(1 point)

We equate this cumulative probability to a random number r; between 0 and 1 and solve
for At in order to determine the time interval At after which the next reaction occurs.



which is equivalent to

(1 point)

In the second step of the algorithm, one determines which of the three reactions has
occurred from a second random number r, between 0 and 1 as follows.

kingng
(1 r, < fanens
. . kingng kingng k_1nEgs
Reaction { -1 hasoccurredif ——=<mn, < +—
kingn k_in
2 r, > EMs | k-1mes
a a

(2 points)

The numbers of molecules ng, ng, ngs, and np are then updated accordingly, and the time
variable t is incremented by At. The two steps are then repeated for the duration of the
simulation, yielding the numbers of molecules ng, ng, ngs, and np as a function of time t.

(1 point)



3) Consider the following reversible reaction:
ky
A+X = 2X
k_4
(8 points total)

a) Derive an expression for the relative concentrations of A and X at equilibrium.
(1 point)

At equilibrium the rates of the forward and backward reactions are equal

kl [A] eq [X] eq = k—l [X] gq

so that

(1 point)

b) Assume that for a given set of conditions, the concentration of A barely changes
over the course of the reaction, so that it can be treated as constant to good
approximation. Using this approximation, calculate the concentration of X as a
function of time. (6 points)

For clarity, we denote

Il
>

[X]
and
[A] = [Alp = a
where we have used the approximation that the concentration of A is constant.

The rate equation becomes

— 2
-5 — klaX - k_1X



so that

Xt dX t
— = |dr=¢
'[XO klaX - k_1X2 ,[0 t

(1 point)

We use the method of partial fractions to integrate the left side.

Xt dx Xt A
——=— —/—+—dx
,LO kiax — k_,x? fXO (k_ix—kqa)  x

Identifying A = k_,/k;aand B = —1/k,a gives us the following integral.

Xt

S 1 1 k_,
—f 7 = i [ - (2 x- 1))
Xo (K—el1 K — 1) 1 1 1 %o
kia
1 gkl BN -1 [k T
k_[ln(k___)] "™ T %a
1a 1a X XO 1a k_l _XL
0

Alternatively, we can use the following trick.

th dx th dx
o kiax—k_x2 ) (k_1 _ %) <2

faa ,du = %dx and changing the integration

Using the change of variables u = k_;
bounds.

Ut du

J‘Xt dx B 1
X (k_l_ﬁ)xz kla Ug u




0

Undo substitution,

k,a
“1 oy -1 (Ream 5o
S
kla uO kla k _ kla
_1 XO
(3 points)
Combining the left-hand side with the right-hand side:
k,a
1 (k=%
—In =—t
kia k . — kia
k_,— kia
kXt — e—klat
k_,— Kia
X0

kia
Xy =
kia
0

(2 points)



¢) Under which circumstances is the approximation justified that the concentration
of A is constant? (1 point)

The approximation is good if A is provided in large excess and the ratio of the rate
constants :—1 is small, so that barely any A is consumed before the reactive mixture
-1

reaches equilibrium.

(1 point)



4) Transition State Theory. (11 points total)
a) The contour plot below shows the potential energy surface of the reaction
AB+C ->A+BC

with the reaction constrained to a linear geometry. Here, A, B, and C are atoms, and
ras and rec are interatomic distances.

Draw the minimum energy path of the reaction and indicate where the reactants
and the products are located.

Draw the path on the potential energy surface that the system follows as the
reactant AB molecule undergoes bond vibrations (without the distance to the C
atom changing).

Indicate the transition state of the reaction and provide a definition of the transition
state. At the transition state, what are the relative distances of the three atoms?

(5 points)

Products

Transition state

‘_Q Reactants
0 AB bond
r . .
BC vibration

minimum energy path with location of reactants and products (1 point)
AB bond vibration (1 point)

location of transition state (1 point)



The transition state is a saddle point, with a maximum along the reaction coordinate (the
minimum energy path), and a minimum along all other normal modes. (1 point)

The transition state is asymmetric, with the AB distance shorter than the BC distance.
(1 point)

b) Use the transition state theory to estimate the rate constant of the reaction

F+H2-HF +H

at 300 K.

The activation energy of the reaction is 1.7 kJ/mol. A fluorine atom has a mass of
19 amu, and a hydrogen atom of 1 amu. The H2 molecule has a rotational constant
of B = 61.6 cm™ and a vibrational frequency corresponding to v = 4395 cm™'. The
transition state has a rotational constant of Bt = 2.3 cm™ and vibrational

frequencies corresponding to Vstretch = 4007 cm™, Vpend1 = 392 cm, and
Vbend,2 = 397 cm™'. (6 points)

The TST rate constant is given by

kgT  qF Eo_

krsy = Ng—— e kel
h avr qv.H,

(1 point)

We calculate the partition functions for the reactants and the transition state.

Reactants.
F: Qv = Qv per = = 2 mekpT)¥? = 8.06 - 103 m™
Ha: Qvi, = Qv Hytr * QHyrot * QHpwip = 1.21 - 10%6m™3

1 3/2 _
Av Hytr = F(Zn my,kgT) " = 2.75-10%° m~3

1 kT 169
qHz,T'Ot - ZhCBHZ - '




e~ /2 hvc

Qupoip =T~ g-x = 2:60 - 107° ,withx = T

(2 points)
Transition state.

qu; = qli,tr ) Q;'Fot ) qj;:ib = 1.17-10* m™3
i 1 ¥ 3/2 31 ..-3
Ay er = ﬁ(znm kpT)3/? = 9.37-10%' m

Gor =5z = 9050

e—x1/2 . e—xz/Z . e—x3/2

P — .10-5
Quip = A (11— 1.37 - 10
with x. = hvstretchc X = hvbend,lc and x. = hvbend,zc
1 keT ' 7% kT ' 3 kgT
(2 points)
This yields the TST rate constant.
K N kgT Q:E —,f—OT
= —_ ¢ kB
T 4 h qvr Qv H,
—-23 29
1.38- 10 300 1.17 - 10 5~1700/(8.314:300)3 ~1 ) 11

= 6.02 - 10%3
6.63-1073%  8.06-1031-1.21-102%°

= 227-10" m3s 'mol™' = 2.27 - 1010 M~1s71

(1 point)



5) The reaction cross section of a bimolecular gas-phase reaction has the following
dependence on the collision energy E

0 forE<E*

O'R(E): ndszE_E*
E

VE* forE > E*

where nd? is the hard-spheres collision cross section, p is a steric factor, and E*
is a threshold energy, below which the reaction cross section drops to zero.

Determine the thermal rate coefficient k(T). (7 points)
To obtain the thermal rate coefficient k(T) = (oz(E)v(E)), we average over a thermal

population of molecules as given by the Maxwell-Boltzmann distribution F(v) for the
relative speed.

k(T) = faR(E)v-F(v)dvz faR(E)v-4n(2nkBT> v2e 2KgT gy
0 0

(2 points)

We transform the integral with E = %ﬂvz and dv = %

1 oo 1 o

2 E
) f nd?pVE — E*VE*e ksTdE
E*

2 __E_
) jaR(E)Ee keTdE =
0

k(T) =i<

kgT \mukgT kB_T (nkaT

where we have adjusted the integral bounds to reflect that the reaction cross section is
zero for E < E*.

(2 points)

A change of variables with e = E — E* and dE = de yields

[T

1 8 B e
2 o kgT kgT
k(T) =nd pkBT<7kaT> VE*e ks J-\/ee BT de
0



We transform the integral with €’ = k—eT and de = kgTdé€'
B

3w

f Vee ksTde = (kBT)if \/?e‘e’de’ = (kBT)ZT
0 0

where we have used the gamma function in the last step. We finally obtain the thermal

rate constant
2E* __E°
k(T) = nd?*p ’ p e kT

(3 points)



6) Derive the relative speed distribution of two particles in a two-dimensional gas.
In order to do so, follow these steps. First write down the combined velocity
distribution of two particles, then transform into center of mass coordinates.
Integrate out the center-of-mass part to obtain the distribution of the relative
velocities. Finally, transform into polar coordinates and integrate out the angular
part to obtain the relative speed distribution. (8 points)

Starting with a one-dimensional velocity distribution

_mv
e 2ksTdvy;

fw)dv; = 2k, T

we can write down the two-dimensional distribution for two particles.

f(vA,x: vA,y; vB,x: vB,y)dvA,xdvA,yde,xde,y
= f(vA,x)f(vA,y)f(vB,x)f(vB,y)dvA,xdvA,yde,xde,y
mgy (Uzzq,x'l'vfl,y) mp (Ué,x"'vlzi’,y)

mymp
2kgT e 2keT  dvy ,dvy,dvg dvg,,

= QkpT)2¢

(2 points)

We transform into center of mass coordinates using

Vg = Ve a5
my
135‘ = VUom — l“jAB
mp

Where v.,,,, V45, and u are the velocity of the center of mass, the relative velocity and the
reduced mass, respectively.

(1 point)

We transform the differentials

N

0V, 0y, .
N OV 0D I T | I
dv,dvg = |det Vem OVag dV,,dv,g = |det ma AV dVag = dUymdiag
dvg 0vp 1 K

= = m
0Vey OUyp B



to obtain

f(vA,xr vA,y; vB,xr vB,y)dvA,xdvA,yde,xde,y
(mg+mp) (Ugm,x+vgm,y)+ﬂ(vAB'x2 + U,ZqB,y)

MaMMp 2kgT
B dvcm,xdvcm,ydvAB,x dvAB,y

~ (nkgT)? ©

(2 points)

We integrate out the center of mass coordinates, realizing that the integral is over a
velocity distribution of a particle with mass m, + mg, where the distribution function has
been devided by my + mp.

J:Of 1 (mA+mB)(V§m,x+ng,y) 1

2kpT d d = —
2kyT ° Vemxemy = G g
(1 point)

We now need to transform the relative velocity distribution to polar coordinates, in order
to average over the radial distribution part.

Vapx = V cos (0)
{UABJ, = v sin ()

With the change of variables dv,p,dv,p, = v dv df, we obtain

M _H(”fxB,x +Vipy) U _uv?
e 2kpT dv,g AV = e 2kBTydvdl
2mkyT ABXTTABY T ok T

Integrating over the radial part yields the relative velocity distribution of a two-dimensional
gas

T2kgT __ 2kT
2k, T e Bvdvj do e Bvdv

(2 points)



