Dynamics and Kinetics — Final Exam

Name:

Total 48 points, 3 h to complete the exam

January 21, 2022

Please note that this is not an open-book exam. You are allowed to use a non-
programmable calculator as well as a formula sheet, A5, single-sided, and
handwritten. The calculator and formula sheet will be checked during the exam.
Computers or are not permitted. Do not write with a pencil or a fountain pen that
can be erased. Please have your photo ID ready.
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1) In class we discussed two-body classical scattering with a central interaction
potential. (9 points total)

a) Sketch a typical trajectory of a scattering event. Sketch and explain the
coordinate system you have chosen. Indicate and explain the masses and
velocities involved. Explain the symmetry properties of the trajectory. Mark the
impact parameter and deflection angle. (6 points)

correct trajectory (1 point)

center of mass coordinate system, with the origin coinciding with the origin of the
central potential; with r the distance between the particles and polar angles 6 and ¢
(1 point)

composite particle with reduced mass pu = % and relative velocity v = v, — v,
1 2

(1 point)

the trajectory is confined to a plane (¢ does not change) (1 point)

a point of minimum approach (., 6,.) between the particles exists, with the trajectory
symmetric with respect to a line through that point and the origin of the coordinate
system (1 point)

correct indication of impact parameter and deflection angle (1 point)

b) For scattering in a Lennard-Jones potential, sketch a deflection function with the
kinetic energy comparable to the well depth. With the help of your sketch, explain
the salient features of the deflection function. (3 points)

correct sketch of the deflection function (1 point)

negative deflection angles and rainbow angle occur because of attractive part of
potential, which causes some trajectories to wrap around the scattering center
(1 point)

deflection function approaches m for small impact parameters and 0 for large impact
parameters (1 point)



2) Describe an algorithm (no need to write proper code) to simulate the reaction

kq
A —» B
o\ Yk
C
with the stochastic method and explain it. (8 points)

The algorithm consists of two steps, which are repeated for the duration of the simulation.
In the first step, the time interval At is determined after which the next reaction occurs.

The probability that none of the three reactions has occurred within a time t is:

—(king+kyng+ksne)t at

Pro_reaction(t) = € =e”
with

a = king + kyng + k3ne
and ny, ng, and n. the number of molecules of A, B, and C, respectively.
(2 points)

The probability p,eqction(t)dt for a reaction to occur in a short time interval [t,t + dt] is
therefore equal to the change in the probability of no reaction occurring

_ pno_reaction (t)

I dt = ae %dt

Preaction (t) dt =

The cumulative reaction probability (i.e. the probability that any reaction has occurred
between 0 and t) is therefore

t

pr(t) = f ae”dt=1— e =1- pno_reaction(t)
0

(1 point)

We equate this cumulative probability to a random number r; between 0 and 1. We solve
for t in order to determine the time interval At after which the next reaction occurs.



This is equivalent to

(2 points)

In the second step of the algorithm, one determines which of the three reactions has
occurred from a second random number r, as follows.

1 r, < X
2
. . k1n1 k1n1 kznz
Reaction {2 hasoccurred if ST < S+~
kin kon
|3 rz =

(2 points)

The numbers of molecules ny, ng, and n, are then updated accordingly, and the time
variable t is incremented by At. The two steps are then repeated for the duration of the
simulation, yielding the numbers of molecules ny, ng, and n. as a function of time t.

(1 point)



3) In class, we have derived the RRK rate constant

ky (E) = (E — E")H

2 =V E
under the assumptions that the s vibrational degrees of freedom can be treated as
classical harmonic oscillators. Derive the same expression for s quantized
oscillators. (8 points total)

_ s—1
a) Explain the physical meaning of the terms v and (%) in the context of the

assumptions of the RRK theory. (2 points)

The term v corresponds to the rate at which a molecule of energy E dissociates (or
isomerizes) if the energy stored in the critical mode (eigenfrequency v) exceeds the
threshold energy E (assumption 2 of the RRK theory).

_ras—1
The term (E EE") corresponds to the probability that the energy stored in the critical

mode exceeds E, and is calculated under the assumptions that the activated molecules
form a microcanocial ensemble (assumption 1) and continue to do so after some have
reacted (assumption 3).

b) Assume that all oscillators have the same eigenfrequency v and that E = Nhv.
How many possibilities exist to distribute the energy E over the s oscillators?
(2 points)

We can visualize the problem as separating a string of N dots (representing the N quanta

of vibrational energy) into s sections, where each section represents one oscillator and
the number of dots per section represents the number of quanta stored in each oscillator.

Q..‘..‘....‘ ‘.
oscillator 1 2 3 “ S

There are s — 1 separating lines. The total number of ways create such patterns (the dots
are indistiguisahble from each other, as are the separating lines) therefore is

(N +s—1)!
NI(s = D!

c¢) How many possibilities exist to distribute the energy E over the s oscillators if
an energy of at least E, = Nyhv is stored in the critical oscillator? (2 points)



With only N — N, quanta left to distribute over the s oscillators, the number of possibilities
becomes

(N=Ny+s—1)!
(N = Np)! (s — 1)!

d) With the results from b) and c), derive the RRK rate constant. Which further
assumptions do you have to make? (2 points)

The probability of finding at least N, quanta in the critical mode is

P(E,E; > Ey) =

(N=No+s—1D! JN+s—1)! (N—Ny+s—1! /(N+5—1)!
(N=N)!(s—1D!/ Ni(s=1)!  (N—=Np)! / N!

which for high energies (i.e. large N) and a small number of osciallators s, becomes

N_NO s—1 E_EO s—1
P(E’ES>E°)z< N ) :( E )

from which we obtain the RRK rate constant.



4) Nitramide (O2NNH2) decomposes in water according to the following equation:

k
O2NNH:2 (aq) — N20 (g) + H20 (1)
The experimentally determined rate law is the following:

d[N;0] [O,NNH;]

a = o

The following mechanism has been proposed.

kq
O2NNH:z (aq) = O2NNH- (aq) + H* (aq) (fast, pre-equilibrium)
k_4
O:NNH- (aqg) 2 N20 (g) + OH- (aq) (slow)
k
H* (aq) + OH- (aq) > H20 (1) (fast)

(8 points total)

a) Is the proposed mechanism consistent with the rate found experimentally? If so,
what is the relationship between observed rate k,,; and the rate constants of the
elementary steps of the mechanism? (4 points)

The rate of production of NOz2 is given by

d[N;0]
dt

= k, [0,NNH"]

(1 point)

If we assume that a pre-equilibrium exists in the first step, we can write down an
equilibrium constant for this step

_ [0,NNHJ[H"]
© [02NNH,]

(1 point)

so that



d[N,0] _ [O;NNH, ]
dt ~ 27¢  [HY]

(1 point)
This is consistent with the experimentally determined rate law, with

kykq
k = —
obs k—l

(1 point)

b) To analyze the kinetics of this complex reaction, one could consider applying
the steady-state approximation to O2NNH- (aq). Is this consistent with the rate
found experimentally? Under which conditions? (4 points)

Applying the steady state approximation to the concentration of O2NNH" (aq) yields

d[0,NNH"]
— = k,[0,NNH,] — k_;[0,NNH ][H*] — k,[0,NNH"] = 0
(1 point)
and
[0,NNH"] = —kk_ll[[cl)jﬂNfzk]z
(1 point)

The rate of production of NO2 therefore becomes

d[N,O]  kyk,[0;NNH,]
dt  k_4[H*]+ k,

This results is consistent with the experimentally determined rate law if k, < k_;[H™].

(2 points)



5) The rate of a bimolecular reaction in the gas phase
A + B — products
generally depends on the relative kinetic energy of the collision. Calculate the total

frequency of collisions per unit volume between A and B that have a relative kinetic
energy larger or equal than a threshold energy E,. (8 points)

The frequency dz,p of collisions per unit volume occurring with a velocity between v
andv+dvis

Azsp = 0apVapPapPpF (Vap)dvap

where

3 /wz
AB
U ) 2 5

F(v,5)dv =4T[(— v2ne 2ksTdy
(Vap)dvyp kT AB AB

is a Maxwell-Boltzmann distribution for the relative particle velocity v, and the reduced mass

_ mim;
= mi+my’
(2 points)

We carry out a transformation with

2E
v = —_
AB 0
p dE
v = —
AB 2iE

where E is the relative collision energy, (1 point)

so that

N =

3
1\2/8 _E_
dZap = OapPaPB (kB_T> <.U_7T> Ee ksTdE

(1 point)

The total collision frequency per unit volume for collisions with energy greater than or equal to E,
is then



1 oo

7
z45(E = Eo) = UABPAPB f Ee kBT dE
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(1 point)

We can solve the integral either through partial integration or through suitable
transformation and use of the gamma function to obtain

[oe}

__E E, Eo
f Ee k8T dE = (kgT)? (k_ + 1) ~kgT
B

Ep
(2 points)
and
8kyT\? [ E, L
Zap(E = Ey) = 0appapPs (F) (kB_T + 1) e ksT

(1 point)



6) Given is the following reaction.
ki k; k3 ky
A-B—-C->D-E

(7 points total)

a) Determine the concentration of C if the concentrations of B, C, and D are
initially zero.

It would certainly be possible to solve this problem sequentially. Instead, use the
following approach that is more simple.

In class, we have already integrated the rate equations for the consecutive reaction

k; k3
B-C-D

where the initial concentrations of C and D are zero. For a given initial
concentration of B, the time-dependent concentration of C is

k2[Blo ke kst
(€] = &, (e —es)

The difference in our problem here is that B does not start out with a fixed initial
concentration [B],, but is continuously being formed. However, for a very small
quantity d[B(t')] that is formed at a given point in time t’, we can calculate how
much C will be formed from this amount d[B(t')] at a later time t — t'. Use this idea
to solve for the concentration of C. (5 points)

We know that the decay of A is described by

[A] = [Alye ™1t
(1 point)

Therefore, the quantity d[B] that is being created at any given point in time t’ during a
time interval dt' is given by

d[A(tD)]
dt’

d[B(t"] = - dt' = ky[Alpe *1t dt’



(1 point)

The quantity of C that is being formed at time t’ from this small quantity of B then
becomes

,k , ,
d[c(D)] = kl[A]Oe—klt szz(e—kz(t—t ) — o ks(t-t ))dt’
(1 point)
so that
: k
[C(t)] = jkl[A]Oe_klt’FZkZ(e_kZ(t_t’) —_ e_k3(t—t’))dtl
0
(1 point)
t t
klkZ[A]O _ (Jr. — / _ i ,
[C(t)] =ﬁ e kth-e (k1—kp)t dt' — e k3tJ-e (ki—k3)t dt’
3 2 5 J
B klkZ[A]o {e—k1t_e—k3t e—klt_e—kzt}
k3_k2 kl_k3 kl_kZ
(1 point)

b) Based on your result in a), how can you use the same approach to calculate the
concentration of D in the following reaction (initial concentrations are all zero
except that of A)?

ki ky k; k4
A-B-C-D->E

Write down the integral for the concentration of D. There is, however, no need to
solve the integral. (2 points)

t

[D(D)] = j ky[Alpe ™

0

koks {e—kz(t—t’)_e—k4(t—t') e_kZ(t_t’)_e—kg(t—t’)}
dt’

k4_k3 kz_k4 B kz_k3



