8 Many Electron Atoms

When we come to the point of dealing with the Helium atom, you will find that we cannot solve the problem
exactly due to the inter-electronic repulsion term. We must therefore use approximation techniques such as
perturbation theory and the variational principle.

The helium atom problem takes on special importance because the methods that are used to treat helium and
the concepts that emerge will be applicable to atoms with more electrons.

Before | apply the techniques of perturbation theory and the variational principle to helium, | would like to make
a brief digression and introduce a system of units called atomic units. The Schrédinger equation for atoms
becomes quite simple if we write it in atomic units.

First, let us write out the helium atom Hamiltonian explicitly (here we explicitly assume that we can neglect the
kinetic energy associated with the nuclear motion):
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Now let us choose a set of units such that

m,=1 , h=1 , e=1 , 4rng, =1
If we do this the helium atom Hamiltonian becomes
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We no longer have to include any physical constants in our Schrédinger Equation. These units are called atomic
units, and all other physical quantities can be expressed in terms of these four. Certain quantities related to
atoms become "natural units".

Quantity Natural Unit Sl unit equivalent
Mass me=1 9.1x 103 kg

Charge le] =1 1.6x10%°C

Angular momentum h=1 1.05 x 103 Js
Permittivity constant 4rep=1 1.1126 x 100 C? Jt m™?

These are the four basic units. Others follow from these:

Quantity Natural Unit Sl unit equivalent
4re 1’ .
Length a, = - 22 =1 (Bohr) 5.3x 1011 m (about 0.5 A)
eZ
Energy =1 (Hartree) 4.35x10718

4rg,a,
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8 MANY ELECTRON ATOMS

Note that one Bohr is the radius of the hydrogen atom in its lowest state. Also note that one Hartree is twice the
ionization energy of the ground state energy of the hydrogen atom.

8.1 Perturbation Treatment of Helium

We want to solve the Schrédinger equation for helium. If we use perturbation theory, we can write the zeroth-
order Hamiltonian as

g :_lvz _EVZ 2.z

1 2
2 2 non

As we have done before, we could further break this up into two one-electron Hamiltonians.

We can write the zeroth-order wave function for the ground state as

l//(o) (r1 ’ rz ) = ylls (rl )l/lls (rZ )

Where the wi; functions are the hydrogen-like 1s wave functions for electron 1 and electron 2.

/23 ,,.
Wls(rj): —e Zj
T

In atomic units, the ground state energy of the hydrogen-like atom is:

You can take the formula that | gave you for the hydrogen atom energy levels and put it in atomic units to verify
this. The zeroth-order energy can therefore be given by

eo_ 22,
2 2

The perturbation part of the Hamiltonian is just

so the first order correction to the energy is

ED = Hy, = [ [y 6, R Ay 1), o,
. . 1
= .“.‘//15 (e )y, (r, )(r_]‘//u (r, )y () dr, d,
12

Note that the integration is over the vectors r; and r,. Thus each of these integral signs above represents a triple
integral, one for each coordinate of each particle (that is dr; is dx; dy; dz, and similarly for dr,)

Remember, that the first order correction in perturbation theory is simply the average value of the perturbation.
Thus, this integral represents the average inter-electronic repulsion (calculated with the zeroth-order wave
functions).

| will not take the time to do this integral explicitly here. The result from the integral is
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8 MANY ELECTRON ATOMS

EY = >z
8

So corrected to first order, the energy of the helium atom is
© , £ 2, 5
E,=EY +EY =-7 +§Z

For helium, Z=2, so

£ =2 575
4

1

The actual value is -2.9033 au, so this result is about 5% in error.
If we were to take the is to second order we would find £; =-2.91 au
To third order one would get £; =-2.9037 au, in excellent agreement with the experimental value.

Recall that there is no restriction that the perturbation theory estimate approaches the true energy as an upper
limit. This only holds for the variational method.

8.2 Variational Treatment of Helium

We can also use the variational method to estimate the energy of the ground state of helium. We will take our
trial function to be the same as our zeroth-order perturbation theory wave function

cD(rl ’ rz ) = l//ls (rl )l//ls (rZ )

/23 a
l//ls(rj): —e€ Z/
T

except that we can treat the nuclear charge Z as a variational parameter.

Where

Thus
3

VAR T
O(r, 1) = e 27"
7

We now have to evaluate the variational function given by
E, :'[(I)*(rl,rz)l-ﬁlfb(rl,rz)drl dr,

where we are omitting the normalization integral in the denominator because we chose 1s functions which were
initially normalized.

The Hamiltonian for the helium atom is the same whether you use perturbation theory or the variational
principle, however in the latter, you must include the entire Hamiltonian in the integral rather than just the

perturbation part when calculating the integrals.

Recall that the Hamiltonian for helium is
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8 MANY ELECTRON ATOMS

(1t should be clear that this is the same as the original.)

If we put the Hamiltonian and the wave functions into the variational function we get

r
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We can now simplify this by noting that

_lvz_é Z_ae,z,/ :_Z_Z Z_ae,y
2 Nz 2\ 7

This is just the Schrédinger Equation for a one-electron atom with charge Z.

We can write one of these equations for electron 1 and another for electron 2. The fact that the wave function
is a product of functions for electron 1 and 2 makes no difference, since the electron 1 Laplacian does not operate
on the electron two part of the wave function and vice versa. We can therefore simplify the variational function
to obtain:

E,(2)= ————+ 7Z(r1+rz)dr1drz
2 I,

1 I

> n

12

7z .z zqﬂz)[z 2 LZ-2 2 1}2_38
7

We can simplify the remaining integral in the following way

h ) h, ) 7@

(Z2=2 722 1\Z . Zz-2 z ZY 1 e
.[— (i, [—+ +—J—e 2n 2)drldrz:Z—J'—e’zzﬁdrlj.—e’zz’zdrz+ - .[—e 2200 Z)drldrz
R s z )

(factor of 2 comes from two identical terms.)

Notice that the last integral is the same integral we had to evaluate in first order perturbation theory. The result
equaled 5/8 Z.

The second integral in the first term is just the normalization integral for a 1s wave function and equals 1. We
are left with

Z} 72
—|—e
T rl

oz 21 L
2 zzldr1:2(z—2)7-|‘ze Zzldrlzz(z_z)z

where the last step was evaluated by looking up the integral.

Combining all the terms in our variational function one gets
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8 MANY ELECTRON ATOMS

2 2

2 z 5
E(2)=-2 -2 122(z-2)+22
oN2)= === +22(2-2)+2

_r %,
8

If we now take the derivative and set it equal to zero (to minimize the energy with respect to our variational
parameter Z, we find that

OE, (2
A):H_g:
oz 8

0

Consequently we have

7
min 16

Putting this back into the expression for E_(Z) gives

min

2
(2} 22 )
16 8 16

Note that Zmin < 2, the charge on the nucleus. This can be interpreted as partial screening of the full nuclear
charge by the other electron (that is each electron partially screens the other). This is a physically reasonable
result.

At first glance, the value for the energy, -2.848 au, seems to be in excellent agreement with the experimental
value, i.e., within 1.8%. One must take a closer look at this agreement, however. While in a relative sense, the
percent agreement with the experimental value is good, even a small percentage of the total energy is still a
significant amount of energy in an absolute sense, particularly compared to typical chemical bond energies.
The difference equals:

-2.848 - (-2.9033) =0.0553 au

Knowing that
1 au (hartree) = 2625.5 ki/mol

this difference of 0.0553 au equals 145.19 kJ/mol

This amount of energy is comparable to a weak chemical bond (it is about 1/3 of a typical CH bond energy).
Clearly, this will not do if we want to use quantum mechanics for more complicated molecular systems.

Part of the problem is that we restricted ourselves to a trial function, which was a product of one-electron
functions. We did this for two reasons:

e This type of function is the zeroth-order function that we used in perturbation theory. Physically this
means that it would be the true wave function if there were not any inter-electronic repulsion. We then
consider the inter-electronic repulsion as a small perturbation on the system and might not expect the
true functions to be much different.

e We do this because the concepts of electron orbitals shape the way we think about chemistry. (This is
the way we like to think about chemistry.)
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8 MANY ELECTRON ATOMS

Think back to first year chemistry. We write the electronic configuration for the ground state of an atom like
carbon as 1522522p2 for example.

The periodic behavior of the elements in the periodic table results from filling electrons into such one-electron
orbitals. This is the way the periodic table is organized. What are we doing when we write that?

Basically we are saying that the wave function for the carbon atom is the product of 2 1s wave functions, 2 2s
wave functions and 2 2p wave functions.

The whole concept of electrons going into orbitals assumes the wavefunction is a product of one electron
wavefunctions.

What we are in effect doing when we write down an electronic configuration such as this is writing down the
zeroth-order perturbation theory wave function. Thus, it helps us think about electrons going into individual
orbitals. This, in turn, has great predictive power about chemical bonding! This notation, which you may have
thought about in first year chemistry as being somewhat mysterious, really has its root in quantum mechanics.

One more related point:
Remember from first year chemistry that the sequence in which orbitals fill as you go to atoms of higher atomic
number is not quite the same as the energies of the H atom orbitals.

The order of the H atom wave functions depend only upon the quantum number n

So 1s<2s,2p<3s,3p,3d<4s,4p,4d,4f<5s ...

But remember the order of orbitals in many electron atoms is
1s<25s<2p<3s<3p<4s<3d<4p<5s<4d...

This is because in writing individual one-electron orbitals, we are neglecting inter-electronic repulsion. We are
neglecting shielding of one electron from others.

When we include inter-electronic repulsion, the energies of the different orbitals change since some are screened
more than others. Recall the radial distributions that | showed for the hydrogen atom wavefunctions. Some
orbitals had little lumps of probability near the nucleus. This influences the amount of screening.

Let us now get back to our discussion of the variational estimate for the ground state of helium. If we don't
restrict our functions to products of one electron functions we can get essentially the exact answer for the energy
of helium, however, we lose the physical interpretation of one electron orbitals which so much shapes our
thinking about chemistry.

However, even if thinking about wavefunctions as products as one-electron functions is only approximate, it has
great predictive power and thus is practical. There are ways that we can keep this useful picture of electrons in
individual orbitals and get a better estimate of the energy. One way to do this is to introduce one-electron orbitals
that are more general functions than the hydrogen atom one-electron functions. One set of such orbitals are
called Slater Orbitals since they were introduced by John Slater. They have the form

Snlm (r' 19, (P) = anr"’le’f’ylm (191 (0)

| will not discuss these in detail, but the angular parts are spherical harmonics and the radial parts are similar to
the H atom eigenfunctions. The parameter & is taken to be arbitrary and is not necessarily equal to Z/n as in the

hydrogen atom wave functions.
Even if we have an extremely flexible one-electron function, there is still a theoretical limit to the accuracy that

one can achieve in a variational calculation if one assumes the form of the wave function to be a product of one-
electron functions.
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8 MANY ELECTRON ATOMS

A procedure called the Hartree-Fock Self-Consistent Field method gives a procedure by which we can calculate
the best wave function which is restricted to a product of one electron functions. In another words, if we are
going to restrict ourselves to one-electron functions, a Hartree-Fock calculation is the best we can do.

8.3 Hartree-Fock SCF Method

I will first explain the application of this approach for Helium. We will generalize it later.

The Hartree-Fock approach starts by writing the wavefunction as a product of one-electron functions or one-
electron orbitals.

l//(rllrz) = €0(r1)(/7(rz)
One typically chooses these one electron functions to be hydrogenlike orbitals but with somewhat more
flexibility. In practice one chooses a linear combination of Slater type orbitals for each function. No matter what

the functional form of these orbitals, they retain their identity as one-electron functions.

The basic physics of the Hartree-Fock method is that it takes into consideration the inter-electronic repulsion in
an average way.

Consider the fact that the potential between two point charges is given by

2
ur) =% __¢©

drme,r  Ameyr
Rather than considering the inter-electronic repulsion as an interaction between two point charges, consider it
as the interaction of a single point charge with a continuous charge distribution. This approach makes sense

inasmuch as the quantum mechanical wave function for an electron gives us its probability distribution.

The potential energy for the interaction of a point charge with some continuous charge distribution is

dU(r,) =—222_gy

2
&l

where p is the charge per unit volume for electron 2 and dr; is the volume element. o dr; is the differential
charge, dqg,

To get the full potential one must integrate over the volume element dr,.

_ [ 9.5
Ulr,) = _[ py dr,

However, we know the probability distributions from the one-electron wave functions.

If @(r,) is the orbital (wave function) for electron 2, then the probability distribution for electron 2 is given by
pydr, =—e @ () plr, ),

where dr; is the volume element of electron.

Since this is a probability distribution for an electron we can also interpret this as a charge distribution for
electron 2. We can therefore write the potential energy that electron 1 experiences from its interaction with
electron 2 as
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8 MANY ELECTRON ATOMS

. 1
Ufff r)= .[(0 (r, )r—(p(rz)dr2 (Note: the change to atomic units)
12

We can therefore write an effective one electron potential

. 1., 2z
Hlff (rl) = —EVi - r_ + Uleff (rl)

1

The Schrédinger equation corresponding to this effective Hamiltonian is
H (r)olr) = &, olr,)
where ¢fr,) is a one electron orbital and &, is the orbital energy.

This is called the Hartree-Fock Equation for helium.

One can use the variational principle to solve this equation and get the best values of the parameters in ¢(r,)

that will minimize the energy ¢, .

Here one is applying the variational principle to a one-electron problem!! That is, one calculates the variational
function, Ea, using the one electron functions and the effective one-electron Hamiltonian. One then minimizes
the variational function by varying the parameters in the trial functions. This gives an estimate of the energy ¢, ,

and a new wavefunction (new variable parameters in the linear combination of Slater orbitals).

Let me first talk first about these wave functions and then about the orbital energy ¢, .
Recall that we started with a wave function w(r,,r,) = o(r,)ol(r,)

The one-electron functions ¢(r,)and @(r,) have the same functional form and have one or several variable
parameters. We then calculated the average effective potential Ufff (r,) that electron 1 experiences using the
function ¢(r,). That in turn gives us an effective one-electron Hamiltonian F{f” (r,) which in turn gives us a new
function ¢(r,)and thus also ¢(r,) as the parameters in both @(r,) and ¢(r,) vary in the same way. We then use
this @(r,) to calculate a new effective potential and then another effective one-electron Hamiltonian which gives

us another function ¢Ir,).

Schematically we can write this

Var. Princ.
olr,) > U7 (1) > A7 (1) > ofr,)

T 1
T A

One continues in this cyclic process until the functions ¢(r) no longer change. When that is the case, the resulting
orbitals are called Hartree-Fock Orbitals.
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8 MANY ELECTRON ATOMS

This is why the procedure is called the Hartree-Fock Self Consistent Field Method because the wave functions
which are calculated are self consistent - i.e. the average field one would calculate from them will produce a
Hamiltonian which will yield a wave function which is the same as the original.

This procedure is fairly simple to visualize for helium, since although there are two electrons and two one-
electron wave functions, the functions are the same. Remember from first year chemistry that one can put two
electrons in each orbital. For many electron atoms, one can still have a wave function that is the product of one-
electron functions, but there must be one distinct function for every two electrons.

In the case of many electrons, one calculates the average potential experienced by electron 1 from all the other
electrons in the atom. One then constructs an effective one electron Hamiltonian and solves for a new one-
electron function for electron 1. One then moves on to electron 2. In calculating the average potential for
electron 2, one uses the new function for electron 1. One then gets a new function for electron 2. You move
down the line repeating this for each of the electrons. When one is done you go back to the beginning and start
all over again. You continue to iterate until the functions change no more.

Let us get back to the case of Helium. When you have found the optimum Hartree-Fock Orbitals, you find the

energy by taking its expectation (average) value using the full Hamiltonian and the full wave function (which is a
product of the optimized Hartree-Fock Orbitals)

E= [0 )¢ (5)A ol )l )dr, d,
where you may recall that for helium,

N 1 1 zZ Z 1
A=Vl Vi-2-2a

2 h n n

If we substitute this into the variational function we get
E=Il+1,+J,
where
L=[e'(r) {—%Vi —ﬂco(r,)dr,
J
Note that this is just the average energy of an electron in the Hartree-Fock orbitals neglecting inter-electronic
repulsion.

and

J, = J‘J‘g)*(rl)g)*(rz) |:I’i:| p(r)e(r,)dr dr,

which is called the coulomb integral. This looks like the average value of the inter-electronic repulsion in the
Hartree-Fock orbitals.

Note that in this determination of the total energy, one simply uses the optimized Hartree-Fock orbitals and does
not vary their parameters. The optimization has already been done.

It turns out that the total energy of the Helium atom is not simply the sum of the orbital energies. We can show
this if we go back to the one-electron Schrédinger equation that we had written

Hleff (o) =& o(r)
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If we multiply this on both sides by @ (;) and integrate we get

& = [ ()H (1) o(r)dr,
If we were to substitute in our expression for the effective one-electron Hamiltonian we could easily show that
g=1+J,
If we then take the sum of the orbital energies we get
g+ =L+J,+1,+J3,#E (this counts Ji, twice)
However, if we compare the orbital energy to the expression we had for E before we can see that
g=E-1,

If we look at the expression for the integral /> we had earlier, you can see that it simply looks like the average
energy of a one-electron atom with charge Z (in this case Z=2 for helium) calculated with the Hartree-Fock orbital.

This is just an approximation to the energy of a helium ion. & is then the difference between the energy of the

helium atom and the energy of the helium ion. That is it the energy needed to remove an electron from that
particular orbital. This is what we know as the lonization energy.

Thus IE=—¢
This is called Koopman's Theorem and can be (and has been) verified experimentally using spectroscopy.
If we were to go through all the mechanics of the Hartree-Fock Procedure and calculate the energy of helium we
would get

E=-2.8617 au.
This is to be compared to the exact energy

E=-2.9037 au (experimental).
Remember, this procedure yields the best estimate of the energy in the approximation that we can represent
the wave function as a product of one-electron functions. The closeness of this result to the exact energy tells us
that it is ok to think of electrons in separate orbitals to a fairly high degree of approximation. While this result is

almost within 1% of the exact energy, as we stated earlier, even a small percentage error can be a big absolute
error.

The question is why isn't this better. What have we left out which might contribute to the energy?Well, in the
basic approach of the Hartree-Fock method, the electrons are assumed to be independent of each other,
interacting through some average or effective potential. This is the assumption that the motion of the electrons
is uncorrelated. We know in reality, the motion of the electrons must be correlated, that is the motion of one
electron will effect that of the other.

We can define a correlation energy as

E.. =E

corr exact

Ee

Although Hartree-Fock gets almost 99% of the exact energy, the difference is about 100 kJ/mole, which is
comparable to chemical bond energies.
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8 MANY ELECTRON ATOMS

The calculation of correlation energies and the inclusion of electron correlations into the wave functions is an
area of active interest.

Let us now move on to Lithium, which has three electrons. If we follow along the lines that we have been
proceeding, it might seem natural to start by writing the wave function as a product of 1s orbitals

w (1,15, 1) =y, (0w (1) (1)

However, most of you probably recall from first year chemistry that you cannot put 3 electrons in a 1s orbital.
To understand why, | need to discuss the subject of Electron spin and Pauli Principle.

Tjalling Koopmans
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