Quantum Chemistry Exercises 7A

- 1. Identify $\hat{H}^{(0)}$, $\hat{H}^{(1)}$, $\psi^{(0)}$ and $E^{(0)}$ for the following problems
- a. An oscillator governed by the potential

$$U(x) = \frac{1}{2}kx^2 + \frac{1}{6}\gamma x^3 + \frac{1}{24}bx^4$$

b. A particle in a box with the potential

$$U(x) = \infty \qquad x < 0, x > a$$
$$= 0 \qquad 0 \le x \le \frac{a}{2}$$
$$= b \qquad \frac{a}{2} \le x \le a$$

- c. A helium atom
- d. A hydrogen atom in an electric field of strength E. The Hamiltonian operator for this system is

$$\hat{H} = -\frac{\hbar^2}{2\mu} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r} + eEr\cos\theta$$

e. A rigid rotor with a dipole moment μ in an electric field of strength E. The Hamiltonian operator for this system is:

$$\hat{H} = -\frac{\hbar^2}{2I}\nabla^2 + \mu E \cos\theta$$

- 2. Using a harmonic oscillator as the unperturbed problem, calculate the first order correction to the energy of the *n*=1 level for the system described in problem 1a. To evaluate the integrals, you can use where appropriate the raising and lowering operators that were introduced in chapter 3.
- 3a. Using a particle-in-a-box as the perturbed problem, calculate the first-order correction to the ground state energy for the system described in problem 1b.
- b. Modify the Matlab code of Exercise 2b to find the numerical result for a=5.78 Å and values of b ranging from 0 to 20 eV.
- c. Compare the result from perturbation theory to the numerical result.
- 4. Using the result of problem 1d, calculate the first-order correction to the ground state energy of a hydrogen atom in an external electric field of strength *E*.

5.	Use first-order perturbation theory to calculate the first-order correction to the ground state energy of a
	quartic oscillator whose potential energy is

$$U(x)=cx^4$$

In this case, use a harmonic oscillator as the unperturbed system. What is the perturbing potential?