6 The Hydrogen Atom

We are now ready to move on to a slightly more difficult guantum mechanical problem whose solution pervades
much of the way we think about chemistry -- the hydrogen atom. As we will see, the eigenfunctions of the
hydrogen atom Hamiltonian serve as prototypes for more complex atoms and for molecules. The concepts we
will develop will be familiar from first year chemistry, in that it provides the basis for talking about orbitals and
their properties.

We will consider the hydrogen atom as a proton fixed at the origin and an electron with mass m. interacting with
the proton through a coulomb potential

eZ

ulr)=-

4e,r

Here, e is the electron charge, &,, the permittivity of free space, and r the distance between the proton and
electron.

Recall that we can reduce a two-particle problem to a single particle problem with a reduced mass of u by
separating off the center of mass motion. In this case, the electron is so light compared to the proton, that the
reduced mass of the system is not very different from the mass of the electron.
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Nevertheless, one can calculate the reduced mass simply enough that we will use it.

The spherical symmetry of the system (i.e. the fact that the potential depends only upon the proton-electron
distance and not the angles #and ¢) suggests that we should use spherical polar coordinates.

We can write down the Schrédinger equation for a hydrogen atom as
hZ
_ZVZ w(r,0,0)+U(Nw(r,0,p)=Ew(r,0,p)

If we substitute V2 in spherical polar coordinates we get

wl10(,0 1 0 0 1 0
—_ — |+ —| sin@— |+ Py ;9, +U ;91 =E Iel
ZyL2 6r(r 8rJ r’sing 80(5”1 66’) rzsinzt?(&gaz ﬂl//(r PI+iyin..o1=Ev(nb.9)

Let's multiply through by 2ur? and bring everything over to the left hand side:

. 2(,2 6{//(,’,0,(/)))_?12 |:i 0 (Sineal//(r,cg,(o)j+ 1 [821//(I’,49,(/7)J:|+2ﬂr2 [U(r)—E]W(f,9,¢)20

or or sind 60 00 sin’ @ op’

The second term here depends only upon dand ¢, and if you compare it to the expression we had for the 5
operator, you can see that we can write

2 g[fZWJ“LEW("a(DHZ/WZ [U(r) - E]wir,0,0) =0
r r
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6 THE HYDROGEN ATOM

Since all the #and g dependence is carried by the I term, we can use the method of separation of variables once
again. We can let the wave function be a function of r times a function of &and ¢.

Because the #and ¢ part of the equation is simply an eigenvalue equation for I , then we know what the #and

@ part of the wave function will be, the eigenfunctions of the ? operator.
2y"(0,0)=11(1+1)Y"(6,9) 1=0,1,2,3,...
The total wave function can be written
w(r,0,9)=R(r)Y"(0,9)

So we had already solved the angular part of the hydrogen atom when we found the eigenfunctions of the I
operator.

Notice that this result is perfectly general for any case when the potential U is spherically symmetrical (that is
only a function of r). We saw this in the case of the rigid rotor where U(r)=0 since r was constant.

If we substitute this form for the wave function back into the differential equation, divide by 2xr” and use the

fact that we know the eigenvalues of 2 we get the following equation for R(r):

hZ E(rZaR(r)j+{h I(l+1)+U(r)_E:|R(r):O
2urtor\ or 2pr?

This is called the radial equation for the hydrogen atom because its solutions yield R(r), the radial part of the
wavefunction. Solving this equation is the only new part of the hydrogen atom problem, since we already know
the solution to the angular part.

It is important to have some feel for the meaning of the terms in this equation.

e Thefirst term represents the radial kinetic energy of the hydrogen atom system, i.e. the energy due
to the changeinr.

e The second term is the angular kinetic energy term (recall that it originates from the 2 term).

e The third is the potential energy.

is called the centrifugal potential. It is frequently grouped together with

The angular kinetic energy term ("

Z;rZ
the coulomb potential term to yield an effective potential
1(1+1)R* 2 1(1+1)#?

Uy () =U(r) + (2 e M)
U

rZ

Cameyr 2ur

Let's take a look at this potential

The coulomb potential alone is purely attractive (and hence negative), going to -oo at r=0. The centrifugal term
is purely repulsive (positive). The positive 1/r? term wins out over the negative 1/r term at r=0, and hence the

effective potential goes to o at r=0 for nonzero /.

The radial equation for the hydrogen atom must be solved by the series method similar to our solution for the
Harmonic Oscillator. | will not repeat this treatment, but trust that you recall the general approach.
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6 THE HYDROGEN ATOM
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In @ manner similar to these previous problems, when one forces to the wave functions to obey the boundary
conditions, quantization of the energy arises. In this case, the quantization condition is

4
En:—ﬁ n=1,2,3,...
gonn

This is often written in terms of the Bohr radius, ao

a, =2 (Recall the Bohr planetary model)

The energy equation then becomes

eZ

E, = n=123,...
87rg,a,n

Notice that although the quantum number [ appeared in the radial equation, the energy does not directly depend
upon / (although we will see that the wave function certainly does). Rather, the energy depends inversely upon
the square of a total quantum number n.

The restrictions on the quantum number n that arises in solving the radial equation is n >/ + 1. Since , as we saw
previously, the smallest value of / =0, this is usually written as

0</<n-1 n=1,2,3,...

Note that the levels get closer together due to the 1/n? dependence as one approaches zero energy. For positive
values of the energy (as measured relative to the energy of the electron at infinite separation) the energies of
the hydrogen atom are no longer quantized but continuous. This is because there is no boundary condition to

keep the electron from going to r=o0.

The Hamiltonian for any one-electron atom (such as He*, Li%*, Be%*) is exactly the same as for the hydrogen atom,
except that the nuclear charge changes. If we had solved the problem for the more general case of one-electron
atoms, we would have had a factor of Z in the numerator of the Hamiltonian. In this case the energy is given by:

4 52 2

e Z RZ
En:_glzT:_T n=1,2,3,...
gh'n n

where R = Ry =109,677.4212 cm™ for the hydrogen atom. (It is very slightly different for other nuclei because p,
the reduced mass of the electron changes as the mass of the nucleus changes). This is simply the Rydberg
expression that we discussed in the early part of the course. Using this expression, one can therefore predict the
spectra of one-electron atoms.
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6 THE HYDROGEN ATOM

Let us now look at the hydrogen atom wavefunctions. Recall that because the potential energy term in the
Hamiltonian, U(r), is spherically symmetric, the wave function will be of the form

Yo, 0,0) =R, ()Y (0,0)

I=0 =1 =2
1 3 5
m=0 Yy =—— Y =, |—cosf Y, =, [——(3cosf-1)
Nar 4r lér
3 i 15 .
m=+1 Y} =,|=—sinde” Y, =, [=—cos@sinfe”
8 8
3 i 15 .
m=-1 Y=, |—singe™ Y, ' =, [—cos@sinfe™
8r 8r
m=+2 y? = L2 G gei
32z
15 i
m=-2 Y, =, |[——sin’0e
32r

where the Y,"(0,¢) are the spherical harmonics. These were the angular solutions to the rigid rotor problem as
well. The first few are shown in the table above.

Recall that the radial equation (given a few pages back) can be solved by using a power series solution similar to
our approach for the harmonic oscillator.

The radial wave functions for the hydrogen atom can be given in terms of well-known polynomials called the
associated Laguerre functions.

The general formula for the radial wave function is

1
S 3
—1-1) Ar——
R, (r) = (”—)3 [ij : ”"°L2n'+71( ZrJ
2n[(n+1)1] | \ng na,
2

2r &h
where the £/} (—J are the associated Laguerre functions and a, =—"—- is called the Bohr radius.
na, e

The first few Laguerre functions are:

N 2r

n=1 1=0 Ll(X):_l X=—
aO

=0 L(x)=-21(2-x) ,

n=2 X:a_

=1 L(x)=-3! 0

1 1 2
=0 L3(x)=—3!(3—3x+—x j
2
_ 3 X—i
n=3 =1 L(x)=-4!(4-x) o
=2 L (x) =-5!
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6 THE HYDROGEN ATOM

The total wave function, w,, (r,0,9)=R,,(r)Y"(6,9), depends upon three quantum numbers. Note that the

radial wave function depends both upon n and /, and the angular part of the wave function depends upon / and
m.
n - the total quantum number (note that n alone determines the energy)

This comes from the solution of the radial part of the wave function. Recall that the energy of the
hydrogen atom is determined by the total quantum number n.

e’
E”:—W n=1,2,3,...
gonn

I - the azimuthal quantum number or angular momentum quantum number

The | quantum number arose from solving the & part of the angular equations. It is related to the
magnitude of the angular momentum vector.

| can take on thevalues 0</<n-1 n=1,2,3,...

All the functions with the same value of n but different / have the same energy.

m - the magnetic quantum number

It gets its name from the fact that in a magnetic field, states of different m which are degenerate split.
It represents the projection of the angular momentum vector on the z-axis.

m can take on any of the 2/+1 values ranging from
-l -1+1,-1+2,..,0,..,1-2,1-1,1

Each n, I state is 2 | +1 degenerate.

For historical reasons, the | quantum number is usually denoted by letters instead of numbers.

/I=01234567 (after f they go alphabetically except for j)
spdfghik

Also, when /=0 and m=0, m is dropped as a subscript of y, since if =0, m must equal zero. Thus the first few
wavefunctions are designated

Wis n=1 /=0 m=0
Was n=2 /=0 m=0
Wop1 n=2 /=1 m=-1
W00 n=2 /=1 m=0
Wop1 n=2 /=1 m=1

Let us put everything together and look at the first few total wave functions.

1(Z)7

U/1s("'91¢7) = \/;[EJ e
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6 THE HYDROGEN ATOM

3
S Zr
1 Z \? V4 e
r,0,p)= — | |2——rle ™
¥, (r,0,9) '_327r(00j[ a(,]

Zr

1
V/Zpil (r’gl (0) = \/% {
0

1
l//2p0 (rl 01 (P) = \/ﬂ [
0

The parameter Z in these functions is the charge of the nucleus. These equations are valid not only for the
hydrogen atom, but for any one electron atom such as He* or Li%*. Only Z will differ.

Recall that the energy of the H atom is independent of / and m, so all the levels n=2 levels have the same energy.
For a given n and /, the (2 / +1) m levels are degenerate, but as we will see, this degeneracy can be broken by a
magnetic field.

There are several things | would like us to consider regarding these wave functions. First note that since the wave
functions are the eigenfunctions of a Hermitian operator, they are orthogonal.

This is expressed by the following integral.

2

J. l//;/m (r’Hl (p)l//n'/'m' (r' 0' (D)df = 5nn'5//'5mmm'
0

O t—3
O =y

where d7is the volume element in spherical polar coordinates.
This says unless n, I, and m quantum numbers are all the same the functions with be orthogonal.

The wave functions as | have given them to you are normalized and thus one can calculate the probability of
finding the electron in any range of r or 8or ¢, however one must be careful to do this properly.

The normalization integral is:

2

[ (R, (07(0,0)) (R, 7 (0,0)) =1

0

o—3
O =y

We can normalize each part separately, since the probability of finding the system with r=0 to o must = 1, and
similarly for finding @between 0 and it and for ¢ between 0 and 2.
However you must be careful to include the proper terms in the volume element for each coordinate.

|

3 . © 2T
(R, (1)Y"(0,0)) (R, (1)Y"(0,0))r" sinddrdodp = [R, (R, (r)r’dr [ [ Y (0,0} (0,¢)sin0dOdp
0 0o

0

2

o t—38

Rn/(f)r r’drsince the functions Y,"(6,¢)are

The probability of finding the electron between r and r+dr

normalized.
2
So to find the electron between r; and r, one must integrate |Rn,(r)| r’dr between these limits. Physically, the r2

comes in that we are calculating the probability of finding the electron in a spherical shell between r and r+dr.
The volume of that shell gets smaller as r gets smaller, so even though the 1s wave function is exponentially
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6 THE HYDROGEN ATOM

2
R, (r)| r* peaks at some non-zero value of r and is

decaying and peaks at r = 0, the probability density function

zero at the origin.
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Because the wave functions are three dimensional, it is difficult to visualize them and have physical intuition into
their meaning. One way to do that is to plot the radial part of the wave function separately. What is probably
more informative than the wave function itself is the radial probability distribution (as shown above for the 1s

function), since that has a physical interpretation.

The radial probability distribution for the first functions is shown below.

0.6f

(R (x)]fay

ol

Note that the higher the energy, the larger the average r of the electron. Also note that there are n- /-1 nodes.

The angular parts of the wave functions are more difficult to display. However the wave functions with /=0 are
somewhat easier to display. The angular part of the wave function for /=0, m=0 is

1
Y5 (0,0)=——=

Jan
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6 THE HYDROGEN ATOM

You can see that there is no explicit dependence upon 8 and ¢. Therefore, the wave function is spherically
symmetric. Combining this angular dependence with the radial probability distribution we showed earlier, the
picture is something like

ls

where the probability density is shown by the density of the dots.

A 2s wavefunction has the same angular part but with a different radial distribution

2s

The wave function with n=2, I=1, m=0, that is the Yapo function has somewhat of a different angular dependence.

5

. zr
1 (zY)
Wipolr,0,0) = (—] re *® cos®
a(]

327

It looks something like this

2p, Px

Note that the type of figure on the right which one commonly sees in textbooks only shows the angular part of
the wavefunction. A shell is drawn containing a certain percentage of the probability density. One must combine
this with the radial portion to get a good view of the electron density.

One way to help visualize this function is to make a substitution for the term r cos®. If we realize that the Cartesian
coordinate z in polar coordinates is z = r cos@we could write the y, , wave function as

5

Zr

1 Z V.

V/Zpo(rre;w): - ze 20
327\ g,
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6 THE HYDROGEN ATOM

Even though it is a little awkward to mix coordinates here, this serves to emphasize the fact that the wave
function has a nodal plane, which in this case is the xy plane. The z in the wave function emphasizes this since
when z=0 then the wave function and the probability equal zero. Because of this, v, , is usually called v, ,

The wave functions corresponding to m=0 (for example m==1) are somewhat more difficult to visualize

because they are imaginary (due to the e factor). We would like to work with real wave functions so we can
easily plot them.

We can use the imaginary wave functions to construct real wave functions by taking linear combinations of the
degenerate imaginary solutions. Remember, if two wavefunctions are solutions to the Schrédinger equation with
the same eigenvalue (i.e. they are degenerate), any linear combination of them is also a solution with the same
eigenvalue.

We can take an equally weighted linear combination of the m=+1 orbitals:

1
l//2px (rl 91 ¢) = ﬁ(Wprl (rl 6; (0) + V/Zp+1 (r' 61 ¢7))

You will see why we call it ,,, ina moment

5

> Zr
1 Z ) .
Recall that 1//2p+1(r,6’,(p):ﬁ[a—J re *® sin@e*”
7T\ Yo
1 1 (z) o o
Thus, %‘”(r'a'(p):ﬁ\/m(a_] re *sing(e™ +e*")
0

By manipulating Euler's formula we can see that

e et
cosp=———
¢ 2
5 Zr
1 Z )V
So, W, (r,0,0)= — | re *sinfcosg
* 4\2r\ a,

But recall the conversion from the Cartesian coordinate x, to spherical polar coordinates:

x=rsinfcosp

Thus v, (r,0,p)= 1 [z} xe_ZZT’“
~ .
X
P

You can see that the yz-plane (x=0) is a nodal plane
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6 THE HYDROGEN ATOM

One can similarly show that if we take the linear combination:

1
szy(r,9,¢) = m(w2p+1(rlel¢) _szfl(r191¢))

1 (z)y =
= R ye o
42\ a,

the nodal plane is the xz-plane (y=0).

So we now have three 2p functions, v, ., ¥,,,, ,,, which are all real. We could demonstrate that v, ., ¥, , ¥,

are mutually orthogonal. Now, because v, ,,¥,,q,¥,,, all have the same energy eigenvalue, any linear

combination will also have the same energy eigenvalue. The same holds true with respect to the 2 operator.

. vl . . . .
WaparWapor Wape all have the same eigenvalues when operated on by L, hence their linear combinations will

also. Hence v, ., ¥,,,, ¥,,, are eigenfunctions of 2.

However, v, ., have different eigenvalues with respect to L, (different m's), thus their linear combinations are
not eigenfunctions of [Z (in general). The m=0 function will be since we didn't change it. Hence v, , ¥, are not
eigenfunctions of [Z (thatis, m is not a good quantum number for these wave functions). It turns out that v, ,

and v, are eigenfunctions of the [Xand [yoperators respectively. By looking at the functions you can see this

intuitively. They have the exact same form as v, but with different axis labels.

We can also take linear combinations of degenerate eigenfunctions for states of higher | to get real
wavefunctions.

For a given |, m ranges from -/ .. ../
One will find that for every function containing an e™?, there is a corresponding one containing e™?. Addition

and subtraction of these functions will give two real functions. The subscripts on these new functions come from
substituting Cartesian coordinates as we did with the v, and y,,, functions.

For example, for n=3, I=2, m=+2

1
l//“xz,yz (r,H,q)) = E(Wadz(fﬁ#’) + l//sdfz(rrgr(p))

7
1 zZY) _;Tr 2 2
= — e |x -y
81@(%} ( )
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6 THE HYDROGEN ATOM

Hence, this is called a 3dxz—y2 function.

Hydrogen-like wavefunctions are also called hydrogen-like orbitals.
In first year chemistry you may have wondered where the strange labels for these hydrogen atom orbitals came
from. It is precisely from the mathematical form of the wave functions after we take linear combinations of the

imaginary functions with tm.

These hydrogen atom wave functions derive additional importance because when we get to many electron
atoms, products of hydrogen atom functions are used as a first approximation to the eigenfunctions.

Also, linear combinations of hydrogen-like orbitals are used to understand molecular bonding. The terms sp, sp?,

and sp® hybridization originates from linear combinations of s and p orbitals. Remember the energy depends only
upon n. So for example, a 2s and 2p have the same energy to first order.

6.1 The Zeeman effect

I would briefly like to consider how the hydrogen atom energy levels change when the atom is placed in a
magnetic field. This will give you a bit more insight into the meaning of the magnetic quantum number, m. This
effect is called the Zeeman Effect.

We must first consider the nature of the interaction of a moving charge with a magnetic field.

y7,

The motion of an electric charge around a closed loop produces a magnetic dipole u whose magnitude is
H=IA

where i is the current in amps/sec and A is the area of the loop in m2.
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6 THE HYDROGEN ATOM

For a circular loop,

qv
2rr

i=

where g is the charge, v is the linear velocity and r is the radius of the loop.

The area of a circular loop A=7r’ so

However we must consider the fact that the magnetic dipole moment is a vector property with both magnitude
and direction. This tells us the magnitude but not the direction of the magnetic dipole.

In general,

This is true whether or not you have a circular loop. You can show that if the loop is circular, then you will get
the result we had previously.

This says that the direction of the magnetic moment is perpendicular to the plane of rotation as | have drawn
above. Remember when doing a cross product you use the right hand rule to determine the direction of the
resultant vector.

Note that
p=mv,
e}
a(rxp) g
= =—1IL
2m 2m
Since L=rxp

For an electron q =-|e]|, so

2m

e

Even though we cannot think about the electron in a hydrogen atom moving in a circular orbit, we know that it
does have angular momentum and hence will have a magnetic moment. To understand how the magnetic field
affects the energy levels of the hydrogen atom, we must add the energy of interaction between a magnetic field
and a magnetic dipole into the Hamiltonian and solve the Schrédinger equation. The potential energy of
interaction between a magnetic dipole and a magnetic field is given by

U=—n-B
where B is the magnetic field. If we choose the magnetic field to be alighed along the z-direction, we have

U:—u~B:ﬂL~B:ﬂBL
2m 2m. °°

e e
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6 THE HYDROGEN ATOM

We can therefore write the Hamiltonian for the H atom in a magnetic field as

e

BZ
2m

e

A=f,+ %

0

where ,‘-AI0 , is the Hamiltonian in the absence of the field and [Z is the operator corresponding to the z-component
of the angular momentum.

The Schrédinger equation is therefore

e[,

2m,

A + ==Ly =Ey

Recall that the hydrogen atom wavefunctions are eigenfunctions of both the I-AIU , and the [Z operators. That is,
we can write separate eigenvalue equations:

4

" m e m
HRM%WwF~J#?mmnww

0" nl 2
8¢,

and LR, (N)Y"(6,9) = mhR,,(1)Y"(6,0)
You can use these relations to see that:

B, n=12,3,..
mh
m=0,+1,42,...+/

pe' e
8g2h’n®  2m

e

Let's consider the implications of this.

In the absence of the field the hydrogen atom energies are just as we had previously calculated. However in the
presence of the field, an extra term is added which depends on the value of m.

Consider the 2p level for example. m can take on the valuesm=-1,0, 1
For m=0 there is no energy due to the magnetic field.
For m=1 there is a positive term added to the energy.
For m = -1 there is a negative term.

The energy that is added to each level is directly proportional to the magnetic field. Schematically this looks like
the following:

Magnetic
field m
Nomagrete = .
s
2p sszzTTT 0
————————— -1
Energy
1s 0
Corresponding
spectrum
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6 THE HYDROGEN ATOM

The 2p level is a single level in the absence of the field splits up into three different levels in the absence of the
field. The magnitude and direction of the shift depends upon the value of m and the magnetic field strength.

The splitting can be observed experimentally by looking at the transitions of the hydrogen atom. In the absence
of the field, there will be a single transition from 1s to 2p, whereas in the presence of the field, the single line will
be split into a triplet.

The splitting is relatively small relative to the 1s—2p transition energy. If we were considering a 3d level rather
than a 2p, the level would be split into a quintet, since m can range from -2 to +2. One can use this effect to
determine the value of / in the terminal level.

Pieter Zeeman
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