4 Three Dimensional Systems

We will now move on to the next level of complexity in solving the time independent Schrodinger equation:
systems of three dimensions. There are interesting new phenomena that arise in multidimensional systems that
are due to the equivalence of the x, y, and z directions.

We will start with the simplest case: a particle in a three dimensional box. We will then move on to the rigid
rotor, which is used as a model for the rotational motion of a diatomic molecule. After this, we will spend a little
time discussing angular momentum in Quantum Mechanical systems and then treat the hydrogen atom problem.

4.1 Particle in a 3-dimensional box

z
A

~

y

Let V =0 inside the box and V = outside the box. The Schrédinger equation inside the box is:

w( d*wi(x,y,z) wlix,y,z) S*w(x,y,z
_h (0wl 2y ) owl Zy ) owl Zy ) Eyx,y,2)
2m ox oy 0z
or
hZ
2 —
_ﬂv l//(XrylZ)_El//(lelZ)
Where sza—z A

+—t+—
ox*  oy* 07
is called the Laplacian Operator

We will use the technique of separation of variables.

Whenever the Hamiltonian A can be written as a sum of parts depending upon each coordinate, i.e.
A(x,y,2)=H(x)+Hly)+H(2)

we can assume that

vx,y,2)=y, (X, (y)v,(2)
We can then write:

2

. [wyw/z(z) Vb ) "”V( W ) ”’Z‘ ’J Ev, v, (W, (2)
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4 THREE DIMENSIONAL SYSTEMS

If we divide both sides by v, (x)y, (y)y, (z) we get

A I A 8ZV/Z(Z)_E
2my (x) ox° 2my,(y) oy’ 2my,(z) 07

Each of the terms on the left hand side are independently functions of x, y, and z respectively. For these terms
to sum to a constant for all x, y, and z, each term must separately equal a constant. Thus.

S o 7 DS N ci 712 B oA )
2my (x) ox° * 2my,(y) oy Y 2my,(z2) o7 :

where E +E +E,=E

Rearranging these we see that we get 3 independent particle-in-a-box equations.

2
0 l//x(x)+2mEX v (X)=0

ox’ S
O, ly) 2mE,

6;2 +TVV/V(V)=0
Oy, (2) 2mE,(z)
o w0

Each of these has boundary conditions that force the wavefunction to zero at either boundary since the potential

outside the box is infinite
v 0=y, (a)=v,(0)=y,(b)=,(0)=y,(c)=0

Applying these boundary conditions as we did with the particle in the box we get:

hZ 2

Wx(x):AXsin(nX”x) E, :g—nXZ n,=123,...
a ma
(nzx h*n’

1//y(y):Ay sin Ty E, = Py n,=12;3,...
hZ 2

v,(2)=A, sin[nzﬂzj E, :8_”12 n,=12,3,...
c mc

The total wavefunctions is then

w(x,y,2) =y, (X, (v, (2)

n z
=AAA, sin(nxﬁxjsin(y—yjsin(nzﬂ zj
a b c

The normalization constant can be found by:

O ey Q

bc
[w" 0.y, 2w (x,y, 2)dxdydz =1
00
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4 THREE DIMENSIONAL SYSTEMS

One can integrate just over the box since  is zero outside box. The integral will yield

AAA = i
abc

Another way to do this would be to realize that the particle must independently have unit probability of being
found at some x, some y, and some z. (This will be true for any orthogonal coordinate system).

Therefore

[ 0w, (dx =1 = A= /%
0

and similarly for y and z.

To find average properties for a 3-dimensional particle in box (x for example) one would write:

()=

O ey Q

[ vy, 0y, @xwr, Xy, (V) (2)dxalydz
One can write this as
(x) = [y ) [y, ey [ (2w, ()2

which is the same as the 1-dimensional problem.

Let's look at the 3-dimensional particle-in-a-box energies:

2 2
W (n* n, n
E .. =EX+EV+EZ=8— —;+b—§+—§
v m\ a c

where we label the energy E by the three quantum numbers. The quantum numbers ny, n,, n, vary independently
and can be attributed to the 3-dimensional nature of the problem.

Consider the case in which our box has sides of equal length, a=b=c. The energy levels are then given by

2

_ 2 2 2
ey, Smaz (nx +ny +nz)

Notice what this brings about. You get wave functions corresponding to different quantum numbers having the
same energy. For example:

/8 (27 . (7m \. (~«

l/lz,l,l(X!yrz): _35|n[—XjS|n[—ijIn(—zj
a a a a
f8 (7T Y. (7 ). (2%

U/1,1,2(Xryrz)= Tﬁﬂ[—xjsm[—yjsm[—zj
a a a a

These have the same energy eigenvalue because n? + ni +n? =6 in both cases.

The situation where two or more wave functions have the same energy is called degeneracy, and the levels are
called degenerate levels.
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4 THREE DIMENSIONAL SYSTEMS

If there are n different eigenfunctions, which correspond to the same energy, the system is considered to be n-
fold degenerate.

You can see that this was caused by the symmetry of the system. When we let the 3 sides of the box be the same
length, the three directions became completely equivalent.

There are important implications when one has degenerate levels which are related to the following theorem:

THEOREM
If we have an n-fold degenerate level in which n independent wavefunctions v, ,y,,...,i, correspond to the

same energy E, any linear combination
p=qy, TGy, ...t C Y,
of the n functions of the degenerate level is also an eigenfunction of the Hamiltonian with eigenvalue E.

Proof:
We need to show that if

Hy, =Ey, I-Alt//2 =Ey, Hy, =Ey,
then Ap=Ep
where P=Cy, +GY, +...+C W,
or Alew, + o, +...+cw, | =E[cy, +op, +...+ ¢, ]

Since the Hamiltonian is linear we can write
Alew, +cy, +...+cw, |=Hey, +Hey, +...+ Hew,
=c,Hy, + ¢y, +...+c,Hy,
But since y, are eigenfunctions with same eigenvalue E,
Hlew + ey, +... 4w, | =c.Ew, +C,Ep, +...+C,Ep,

Thus,
Hlew, +ow, +...t e, | =E[cw, +ow, +...+cw,]

or Fl(p:E(p

We will see degeneracy crop up in many other parts of the course, for example when we will discuss the orbitals
of the hydrogen atom.

In particular, it has some effects on simultaneous measurements in quantum mechanical systems.

4.2 Separability of the Hamiltonian

The 3-dimensional particle-in-a-box has illustrated another important principle that we have already seen twice
before and will see frequently in this course—the use of the technique of separation of variables to solve a partial
differential equation.
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4 THREE DIMENSIONAL SYSTEMS

Essentially it allows us to replace a partial differential equation with a set of ordinary differential equations. We
did this for the time dependent Schrodinger equation, the classical mechanical harmonic oscillator, and now for
the 3-dimensional particle-in-a-box.

While this is a standard technique for partial differential equations in general, it has particularly important
consequences when applied to solving the Schrodinger equation.

In general, if the Hamiltonian can be written in the form

A(a,,q,,9,)=H(a,) +H(q,) +H(qs)

(using a 3-dimensional case as an example) where the g's are any set of orthogonal coordinates, we say that the
Hamiltonian is separable.

This is true because the Schrédinger equation is a linear, homogeneous differential equation. We can assume
solutions to the Schrédinger equation in the form

v(a,,9,,9;) =y (a,)v(a,)w(a,)
We then get 3 ordinary differential equations involving w(q,), w(g,) and w(q;) .

The resulting eigenvalues for the energy E will be the sum:
E=E, +E,+E,

We can generalize this result to the case where we can write our Hamiltonian in terms of two independent sets
of coordinates.

For example, in a many particle system, if we can write the Hamiltonian in a form which divides according to the
coordinates of each particle, then we can solve separate Schrodinger equations for each particle. The wave
functions will be the product of wave functions of each particle and the energy will be a sum of energies for each
particle.

Another way one can divide the Hamiltonian for a system of two particles is to write the total energy in terms of
the energy of the motion of the center of mass and the relative motion of the particles. We can do this whenever
the potential energy depends only on the relative coordinates. (Remember we had done something like this for

the solution to the classical harmonic oscillator).

If we let X, Y, and Z be the coordinates of the center of mass and x, y, and z be the internal or relative coordinates
(coordinates relative to the center of mass), we can write the total energy of the system

E :%(VX2 +V} +V§)+§(v§ +v, +vf)+U(X,y,Z)

where M is the total mass and u is the reduced mass (as we had defined earlier).
We can write this in terms of momenta by noting that
P, =MV, and p, = uv,

and similarly for y and z.

15:%(3(2 +P; +P§)+i(pf +p, +pj)+U(x,y,z)
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4 THREE DIMENSIONAL SYSTEMS

We can then write the quantum mechanical Hamiltonian as

- w(et o & w(o o &
He———| St 5+ |- | =5 +t=5+t== |tUlxy,2)
2M\oX® oY® oz 2u\ox” oy° oz

You can see this falls into the form

H=H, +H,

where Fll depends on the center of mass coordinates only and I-AI2 depends on internal coordinates only.
The total wavefunction is therefore

Vit XY, 2,%,9,2) =00 (XY, 2Dy, (X, Y, 2)
and the energies are
E_ =E__+F

Tot — “Trans Int

If we look at the part of the Hamiltonian that describes the motion of the center of mass
- w(ie o 0o
H:l =—— Y + sy + Py
2M\ oX° oY° oz

you can see that this just represents the translational motion of a free particle in space. Since there is no potential
to impose boundary conditions, the energy of a free particle is not quantized.

Thus, the contribution to the total energy is just a constant and is of little interest. If you look at any transitions
between energy levels, this constant will drop out since it is the same for all internal states.

We are left with the Schrédinger equation for the relative motion

- hz 62 62 62
__ﬂ[¥+a_f +§j+ U(X'y'z)}//’"‘ (,¥,2)= E, 1 (X9, 2)

or simply
2

[
—EVZ + U(x,y,Z)}//,m (x,y,2)=E, W, (x,y,2)

where V? is the Laplacian Operator.

Later we will see that this Schrédinger equation can be further separated, although we will not show this explicitly
until next semester. For example, when modeling the vibrational and rotational motion of a diatomic, to first
order one can separate the vibrational coordinates (relative distance) and the rotational coordinates (angular
orientation). This will allow us to write the energy of a vibrating, rotating diatomic as the sum of the vibrational
energy and the rotational energy.

So when we draw vibrational energy levels on a harmonic potential energy curve for example, one can draw the
rotational energy levels on top of this.

We will also be able to separate the motions of the electrons from those of the nuclei.

92



4 THREE DIMENSIONAL SYSTEMS

4.3 Choice of Coordinate Systems

For a multi-particle system, the Hamiltonian may be very complicated in Cartesian coordinates with lots of cross
terms. However certain problems have an inherent symmetry that can simplify the problem if the coordinate
system coincides with that symmetry.

For example consider a diatomic which is constrained to rotate in the x-y plane:

You can see that upon rotation both x and y will change, however if you look at what happens in plane polar
coordinates (r, 8), only & changes. The Hamiltonian can be written as a function of & only (which is the same as
particle on a ring).

Consider a rotor in which the distance r is fixed (i.e., a rigid rotor) but which is not confined to a plane.

We need to convert to spherical polar coordinates.

z x=rsinfcos@
y =rsinf@sing
z=rcosf

¢ r 0<0<7,0<p<27,0<r<ow
z=rcosf
0
; ¥y
~ / 2 _ 2 2 2
e /’/x=rsinﬂcos¢> r=x+y +z
. /
a7 z z
y=rsin 8 sin ¢ ) cosf=—=

royx+y’+2

tanp =

*
x |I=<

Here ris fixed, and only @ and ¢ change. In Cartesian coordinates you would have to consider the change in all
three coordinates, x, y, and z.

So choosing the proper coordinate system can help separate (and simplify) the Hamiltonian.
It turns out that for any two- particle problem in which the potential U simply depends upon the relative

coordinates of the two particles, (i.e. U = U(r)), one can greatly simplify the problem by working in spherical polar
coordinates.
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4 THREE DIMENSIONAL SYSTEMS

To convert the Schrodinger equation for internal or relative motion
hZ
|:_sz + U(lelz):|'//(xlyrz) = Eln[l//(xlylz)

into spherical polar coordinates, one must convert the Laplacian operator V2 to spherical polar coordinates. To
do this you need to use the chain rule of differentiation to convert all the second partial derivatives from
derivatives with respect to x, y, and z to those with respect to r, 6, ¢.

For example, consider some function f(r,8,¢)where r, 6, and @are in turn functions of x, y, and z.

3,153,155 () E
ox),, \ox), \or),, \ox) \og), \ox), \op),

and similarly for y and z.

To make this into an operator equation we need to write:

()15, A5G ) 5] )

ox),, ox ), \or)g, \ox), \o08) , \ox) \op i
The second derivatives come from applying this operator twice.

0’ 0 0
[ﬁlzf—[a—xl,z ).
GGG B 5,y
ox ), |\\ox ), \or)g, \ox), \o08), \ox) \op P

. . 0) . . .
We now need to substitute in for a—ffrom the previous equation. Then we need to calculate the partial
X

derivatives of r, 6, and ¢ with respect to x, y, and z.

Then the whole process has to be repeated for the second partials with respect to y and z. | will skip over the
gory details and leave them for the exercises. When we are all done, the Laplacian in spherical polar coordinates

is
2
szég(r2gj+ - ! i(sinﬁij-k ; 12 6—2
reor\' or) r°sind06 00 ) r’sin" @\ op

Although this looks quite complicated, it greatly simplifies the Hamiltonian of systems which have spherical
symmetry, that is cases where U = U(r).

We will use this form of V? in our solution of the rigid rotor and hydrogen atom.
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4 THREE DIMENSIONAL SYSTEMS

4.4 The Rigid Rotor: A Model for a Rotating Diatomic

Consider two particles rotating - rigidly fixed at some distance r apart.

For diatomics, this approximation is pretty good because in the ground vibrational state, the root mean square
amplitude is approximately 5% of the equilibrium bond distance. For higher vibrational levels this approximation
begins to break down.

Center of
mass

/

7  akgular frequency

my

The system rotates about the center of mass: i.e. the center of mass looks stationary.

Center of mass condition:

myr, =myr, and r=r+r,
This gives
m m
r,=—-=>—r and rp=—-=%—r
m, +m, m;, +m,

The kinetic energy is given by:

but note that
vV, =rLo and vV, =hLo

We therefore have:

1 1
KE = 5’""1”120)2 + Emzrzza)2

=—lw
where
) ) m,m
I=mr} +myr, or [=—22r*=pr?
m, +m,

So we find that the moment of inertia of a diatomic is the same as that of a single particle of mass u rotating
about a point.
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4 THREE DIMENSIONAL SYSTEMS

As an aside, note the symmetry between linear motion and rotational motion.

Linear Motion Rotational Motion
X o
dx do
V=— w=—
dt dt
p=mv L=lw
2 2
L
KE ==mv? =P KE = =la* ==
2m 21
m I

Angular displacement is analogous to linear displacement. Moment of inertia is analogous to mass. Angular
velocity is analogous to linear velocity. Angular momentum is analogous to linear momentum.

We now need to write down the Schrédinger equation for the rigid rotor. By our definition of the rigid rotor, the
potential term in the Hamiltonian is zero since the distance r is fixed, U(r)=0. We can set the zero of energy
wherever we like and we choose it to be zero at the distance r. Since r is fixed, the potential is always zero. Thus,
the Hamiltonian consists only of a kinetic energy term.

Because r is fixed for the rigid rotator, this problem has spherical symmetry. That is, U = 0 falls into the category
of U = U(r) (independent of #and ¢). We would therefore like to write down the Hamiltonian in spherical polar

coordinates to take advantage of the symmetry of the system.

We can write down the classical expression for the rotational kinetic energy:

KE,

Classical — ~
2 21

and then find the Hamiltonian by substituting the [* operator in spherical polar coordinates. This is a fairly lengthy
procedure. One writes down

C=L+L+L

and then substitutes in the expressions for the L, Ly, and L, operators (I had given you these when we were

discussing postulate 2). Once you substitute in the operators, you then have to convert all the partial derivatives
to spherical polar coordinates.

The easier way to do it is to realize that we have already converted the V? operator into spherical polar
coordinates. Recall that the Schrédinger equation for the internal or relative motion of a two-particle system is

hZ
|:_sz +U:|l// = Elntl//

For the rigid rotator, U = 0, so we can write

2
po-lye
2u

Recall that V? in spherical polar coordinates is

, 10(,0 1 o(. 0 1 o
\% == r-— +2—.— sind— +ﬁ 5
reor\' or) r°sind06 00 ) r’sin" @\ op
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For the rigid rotor, r is constant, so the first term of this operator operating on a function will just give zero (i.e.
there will be no r dependence of the wave function if r is fixed).

The other way to look at it is that the first term of this operator (when multiplied by -h?/2u) represents the radial
part of the kinetic energy. Since r is fixed, there is no radial contribution to the kinetic energy. So we have:

2 2 2
I:I:—h—VZ:—h— 1 9 sin@ﬁ 1 0
2u 24| r’sind 06 00) r’sin*6\ 0¢°

We can use this to determine the operator for L? if we would need it (we will need it shortly when we discuss
angular momentum). If we take the 1/r? outside we can write

2 2 2
2u 2ur| sind 060 00 ) sin" @\ o¢

|l 1 0 [ 0 J 1 o
=——| ——| sinfd— |+ —
21| sing 06 00 ) sin’ 6\ 0¢’

Comparing this to the expression for the kinetic energy in terms of the angular momentum operator we have

2
P?=-n ii[siné’ij+ 1[0
sind 00 00 ) sin*8\ 0¢’

Getting back to the Schrodinger equation we have

Ay (0,0)=Ep(0,9)

By convention, the wave functions (€, ¢) for the rigid rotor are usually denoted Y(0,¢):
AY(0,9)=EY(0,9)

There is no r dependence to the functions because r is not a variable.

The eigenfunctions Y(&,¢)are called spherical harmonics and arise as solutions to the angular part of all
spherically symmetric potentials, including the hydrogen atom.

Writing out the Schrodinger equation in more detail

hz 1 0 0 1 82
—| ——| sin0— |+——| — | |Y(6,9)=EY(0,
ZILinHaH(I agj sinze[a(gZH (0,¢)=EY(0,9)

Let us make the substitution

_2IE

ar

and multiply through by sin* 8 to get

+ Bsin* 8Y(6,p)=0

2
sin 0%(5in0 aY(H,go)j + 0v(0,9)

00 09’
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We will once again use the technique of separation of variables to simplify this partial differential equation.

Let
Y(0,9)=0(0)D(p)

Substitute this into the differential equation and divide both sides by ®(0)®(¢p):

)+/;’sin2 0+ —— azq)(zq)) =0
D(p) Op

sind 0 ( . 00(0)
———| sin@
®(0) 00 00

You can see that the first two terms are only functions of #and the last is only a function of ¢. For this equation
to hold for all @and ¢ each part must separately equal a constant.

Let us call the separation constant m?2.

sind i(sine 8@)(0)) + fsin* @ =m’
|0) oo 00
2 2
19 (D(Z(D) =-m or I lp) (D(2¢) +m*®(p)=0
@(p) Op
The solution to the @ part is straightforward; in fact we have done it before.
By inspection
D(p)=A_e™ or O(p)=Ae "™

These solutions represent clockwise and counterclockwise rotation in the angle ¢ respectively.

Since the wave function must be single valued and continuous, we must require that ®(p)=®(p+27)
A e™ =A "o

consequently
e =1

This will be true whenm =0, £1, £2, ...

We could have applied the boundary conditions to the e™™ term as well and gotten the same result (or we could
have applied it to a linear combination of the two solutions).

The constant An, is determined by the normalization condition:

[ @ (@) D(p)dp=1

A I e"™e™dp=A. 2Jird(p: 1
0 0

Al2r=1 = A =
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So the solution to the ® part of the equation is

CD((/)):Le"’"”” m=0,+1,+2,...

NPT

It is clear that this is exactly the same as the particle on a ring. It should be. It is a one-dimensional rotational
problem with fixed distance.

We have now solved the ¢ part of the rigid rotator problem. We still need to solve the differential equation for
the @ part

sin@ o [sin6’6®(€)

—_— j+ﬁsin2c9:m2
0(0) 00 00

If we take this equation and let x = cos@and () = P(x) one could show that the differential equation becomes

o\ d°P) L dP(x) -m B
(1-x) v, J{ﬂ 1_X2}P(x)—0

This differential equation is called Legendre's equation and is well known in classical physics. It occurs in a variety
of problems which have spherical symmetry. The solution to this equation is similar to our solution to the
differential equation that arose from the Harmonic Oscillator problem. The standard technique to solving this is
to expand the function in a power series, generate a recursion relation, and then break off the power series after
a finite number of terms to force it to be well behaved at the boundaries.

We will not go through the details but in an analogous way to the Harmonic oscillator problem, in breaking off
the power series, one gets the quantization of the energy:

B=1(+1)
but recall that
2IE
ar
so
hZ
E=—I(I+1) 1=0,1,2,...
2/

I will first discuss the wave functions and will then come back and discuss the implications of these energy
eigenvalues.

The solutions to Legendre equation

2

{/(/H)—lm Z}P(x):o

(1-%') d*Plx) , dP(x)

dx? dx —X

when m=0 are called the Legendre Polynomials and are designated by the value of / as a subscript, i.e. Py (x),
P1(x), etc.
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These are listed in many standard texts in mathematics and physics. The first few Legendre Polynomials are:
P(x)=1

P (x)=x

P,(x)= %(3)(2 -1)

1
P,(x)= E(SXS - 3x)
1 4 2
P,(x) = E(35x -30x" +3)
Note that there is some similarity to the Hermite polynomials from the harmonic oscillator problem

To generate the function ®() you must substitute x =cosé.

The solutions for m =0 are called the Associated Legendre Functions, and these are related to the Legendre
Polynomials. They are designated by a subscript for / and a superscript indicating the absolute value of m,

pl\m\ (x)
The Associated Legendre functions can be related to the Legendre Polynomials by

7 d"Ax)

pl\"'\ (x)= (1 — ) dX‘m‘

Since only the absolute value of mis included here, then the ® equation for +m and -m is the same. (The overall
functions are different however because the ® part is different.)

Note that the Legendre Polynomials are also associated Legendre functions; hence the solution to the problem
is usually stated in terms of the latter (i.e. the superscript for |m| is retained even when m=0).

The first few associated Legendre functions are:

1=0 I=1 =2 =3
m=0 PO°:1 PIO:COSH %021(3C0529—1) %0:1(5(:053‘9_3(:05‘9)
2 2
m=+1 P! =sind P} =3cosfsind P} zg(scos30—1)sin9
m=+2 P} =3sin’ 6 P} =15cos@sin’ 0
m=+3 P} =15sin* 0

Recall that our solutions to the full Schrodinger equation for the Rigid Rotator are of the form
Y(0,9)=0(0)D(p)
Combining the ® and ® solutions we then have

Y"(6,p)=N, P (cos 0)e™
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From the properties of the Associated Legendre functions and from our normalization of the ® equation one can
show that the normalization constant is

N

4z (I+|ml)!

Im

{(2/“)@}

The Rigid Rotator wave functions can then be written:

(2/+1) (1=|ml|)!

1
2
Y"(60,0) { 1 P (cosB)e™

Recall that these functions are called Spherical Harmonics.

From the definition of the associated Legendre polynomials one finds that the quantum number m can only go

as high as £/. Thus m=0,1,+2,..., %/ We will derive this explicitly later in the course.

Rigid Rotor Wave Functions

The first few spherical harmonics are

/:0 l=1 I=2
m=0 1 3 5
yo=—— Y? = |—cos6 Yy =,/—(3cos6-1)
Narx 4Arx lé6rx
m=+1 3 ) 15 i
Y, =, |-—sinfe” Y} = |[—cos@sinde”
8r 8
m=-1 ) 1 i
Y= /i sinfe™™ vt = —Scosﬁsiné’e‘“”
8r 8r
m=+2 15 .
Y} = |——sin’ 0e™*
327

Y,? =, |——sin’0e

3
L
N
&[]

As the energy is given by:
2

h
E=2(+1 1=0,1,2,...
o (+1)

and does not depend upon m there is some degeneracy in that different eigenfunctions will have the same
energy.

Thus, each column represents a set of degenerate functions. Think about the physical interpretation of these
functions in terms of probabilities. What do they mean?

These functions form an orthonormal set. The orthonormality of these eigenfunctions is expressed by

2r w

f IY,’" (0,0)Y"(0,9)sin0dpdd
0o
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It is important to note the siné in the integral and understand where it comes from. The volume element in
spherical polar coordinates is dxdydz =r>sin@drd@dg. r is a constant for the rigid rotator. Integration of the

wave function over r must just yield 1, since there must be unit probability of finding the particle at some r.
Therefore the orthonormality integral reduces to an integral over only 8and ¢@. The 8and ¢ part of the volume
element is sin@df@dg . Physically this represents the differential element of surface area of a sphere of unit

radius. This is where the name spherical harmonics arises.

4.5 Spectroscopic Implications of the Rigid Rotor Energy Levels

Let's now consider implications of the energy eigenvalues:

2
E=%I(I+l)=8/(/+1) 1=0,1,2,3,...
2 2
Here B=h—= i
20 2ur?

is known as the rotational constant and characteristic for every molecule.
You can see that the energies are independent of the m quantum number. This means that there is degeneracy.

The first level (/=0) occurs at an energy of 0. The second level occurs at 2B. The next at 6B. This is shown in the
figure below.

E4 ——p— 20B —

8B

Es 128

6B 2B

Ez 6B — { l
4B

E 2B

! I 2B

Eo 0 -

vV —

Energy Levels Spectrum

In considering how a rigid rotator interacts with light, we must consider the selection rules, just as we did for the
harmonic oscillator. In the course “Spectroscopy” we will show that transitions between rotational levels must
follow the selection rule Al = +1 , similar to the Harmonic oscillator problem.
As we will then also see that in addition to this selection rule, a molecule must possess a permanent dipole
moment to undergo a transition from one rotational level to another. Thus, homonuclear diatomic molecules
will not show a pure rotational spectrum because they do not have a permanent dipole moment.
Using the selection rule one finds for the energy differences:

AE=E,, —E =B(I+1)(/+2)-BI(I+1)

=2B(/+1)

where we have designated / as the quantum number of the lower level.

So the first transition is at a frequency corresponding to 2B, the second at 4B, third at 6B, etc.
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4 THREE DIMENSIONAL SYSTEMS

In the rigid rotator approximation, we expect transitions to be equally spaced by units of 2B. Deviations from this
approximation will show up as transitions that are not quite equally spaced.

From the value of B measured spectroscopically, one can determine the moment of inertia and hence the

equilibrium bond length since Iz;tr2 .

For H35Cl, for example B is about 10.6 cm'™. This value of B would yield a bond length of 1.29A. The most accurate
geometries of molecules are determined from microwave spectroscopy.

| would like to now return to our discussion of the rigid rotor (and 3-dimensional systems in general) and consider
the subject of angular momentum in more detail.
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