3 The Harmonic Oscillator

What we have been doing over the last few weeks has been somewhat abstract and at times seemed far removed
from chemistry, although as you will see throughout the year, it will be quite relevant.

Today | would like to begin a discussion of a problem in quantum mechanics that has clear and important practical
implications in chemistry: the harmonic oscillator.

Its importance is derived from the fact that to a good approximation, vibrational motions of molecules can be
modeled as harmonic oscillators. As we will see more clearly later in the course, transitions between vibrational
energy levels of molecules (i.e., the eigenstates of the Hamiltonian for vibrational motion) lead to absorption of
light in the infrared region of the spectrum. The manner in which a molecule absorbs infrared light is a fingerprint
of that molecule and hence a valuable tool for molecular identification. Moreover, properties such as heat
capacities and chemical reaction rates are strongly linked to a molecules vibrational motion. Thus, a good place
to begin to understand molecular vibrations is the harmonic oscillator problem.

The energy levels of a diatomic molecule are very closely predicted by solving the quantum mechanics of a
harmonic oscillator, and while those of polyatomic molecules may seem quite a bit more complicated, to first
order they can be considered as a superposition of harmonic oscillator energy levels. So the principles we will
learn here will be applicable not only to diatomics but to polyatomics as well.

Brief outline of what we will do:

1. After defining what we mean by a harmonic oscillator, we will treat the problem using classical
mechanics.

2. We will then introduce the solutions of the time-independent Schrodinger equation for a harmonic
oscillator and look at the nature and properties of the eigenvalues and eigenfunctions. Here we will
introduce a few new concepts that | did not mention in our previous simple models.

3.  We will then go back and work through the mathematics required to arrive at the solution. The form of

the Schrédinger equation is more difficult than those we have already solved, and we will have to
introduce some new mathematical approaches to solve it.

3.1 Classical Harmonic Oscillator

Let us begin by defining what we mean by a harmonic oscillator.

As depicted below, consider a mass connected to a wall by a spring. The only force on the mass is from the spring.
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3 THE HARMONIC OSCILLATOR

As you would expect, the force on the mass will be some function of the displacement of the spring from its
equilibrium value.

Let the displacement of the spring from its equilibrium value be denoted by x so that x = z - lo. The harmonic
approximation states that the force on the mass is simply proportional to the displacement from the equilibrium
position, that is

F=—k(z—1,)=—kx
This is a statement that the spring obeys Hooke's Law.
The negative sign indicates that the force acts to restore the mass to its equilibrium position. If we define positive
z as the downward direction, then when z is greater than /, the force is negative; that is, it acts in the upward
direction restoring the mass to its equilibrium position. If z<ly, the force is positive and pushes the mass down.
The proportionality constant k represents the stiffness of the spring. A very high value of k would represent a
stiff spring, which would require a large force to compress or extend, and a low value of k represents a loose,

floppy spring, which is easy to compress or extend.

To solve the classical problem, we start with Newton's second law, F=ma .

d’z(t) _

F=ma=m e —k(z(t)—1,)

We have simply set the mass times the acceleration equal to the Hooke's Law force.

Using x(t)=z(t)-1,

2 2
We find that d th) = d th)

dt dt

2

so m d :ﬁt) =—kx(t)

2

a0, K =0
t m

This is a linear second order differential equation with constant coefficients.
Let us guess a solution of the form:
x(t)=e”

Substituting this into the differential equation:
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3 THE HARMONIC OSCILLATOR

Let's set

W= \/z ) x(t) = ce™™
m

The most general solution is
x=ce" +ce™

Remember we showed earlier in the course that using Euler's formula we could write this
x(t) = Acos(awt) + Bsin(wt)

where A and B are just combinations of ¢; and c;.

We can evaluate the constants A and B by considering the initial conditions (i.e. the conditions at t=0). Suppose
we stretch the spring to a length zo so that its initial displacement is x, = z, —/, and then let it go.

x(t =0) =x, = Acos(0) + Bsin(0) = A=x,

Thus
x(t) = x, cos(at) + Bsin(awt)

The initial velocity is zero since we start at rest. The velocity is just given by

v(t)= dZ—(:) = —x,wsin(wt) + Bwcos(wt)
so
v(t =0)=0=—x,wsin(0)+Bwcos(0) = B=0
Thus
x(t) = x, cos(at)
k g .
where o=,|— from the boundary conditions given above.
m

If we plot the displacement from equilibrium x(t) versus t it looks like the following:

ArAN

t=2n/®

X0

The displacement of the mass oscillates between xo and -xo with a frequency of ® radians/sec or w/27 cycles/sec.
Let us look at the potential, kinetic, and total energy of the harmonic oscillator.
Remember the force is given by:

F=—kx
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3 THE HARMONIC OSCILLATOR

From classical mechanics, we know that a force can be expressed as a derivative of the potential energy
dU(x
F(x)= _duk)

where U(x) is the potential.

We can therefore express U(x) as:
U(x) =~ [ Flx)dx
= Ikxdx
L ve
2

The integration constant here is arbitrary and can be used to fix the absolute zero of energy. This is usually taken
to be zero when x = 0.

Therefore the potential energy of a harmonic oscillator is
Ulx)=—
or, as a function of time:
k
u(t)= —x cos’ (wt)

The kinetic energy can be given by

2 dt 2 dt

Using x(t) = x, cos(at)
gives ox _ —wx, sin(wt)
dt °
So we get K(t)= —ma) X2 sin’(wt)

We can plot both the potential energy and kinetic energy:

Total Energy=KE+ U

Y
NANN

Time

Energy
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3 THE HARMONIC OSCILLATOR

The fact that the system starts with all potential energy and no kinetic energy comes from our choice of initial
conditions (we said that we would stretch the string holding it still and then let go.)

You can see that the potential and kinetic energy are 180° out of phase. The energy transfers back and forth
between being all kinetic energy and no potential and then all potential energy and no kinetic. Where the energy
starts is determined by the initial conditions.

Note that when the energy is all potential, the spring is at one of its turning points: the mass is turning around
and going the other way. When the energy is all kinetic is when the mass passes through its equilibrium
configuration.

You can see that because of the phase difference, the total energy remains constant, that is total energy is
conserved. The system is called a conservative system. This will be the case whenever the force can be written as
a derivative of the potential. (Cases that do not fall into this category are those that have forces like frictional or

viscous forces.)

To show quantitatively that the energy of a classical harmonic oscillator remains constant, we need only sum our
expressions for U and K.

E(t)=U(t) + K(t) = gxé cos?(at) +%ma)2x§ sin? (ct)

Remembering that
\F
w=|—
m

kXé 2 )
E(t):T[cos (eot) +sin (a)t)]

we can write

So the total energy is a constant and is equal to the potential energy at its turning point.

We now want to make the Harmonic Oscillator problem look more like a diatomic molecule; not just a mass
attached to a wall.

\
N
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3 THE HARMONIC OSCILLATOR

Consider two masses connected by a spring. We now get two equations of motion, one for each mass.

d’z,(t) N
m, e =k(z,(t)—z,(t)—1,)
dzzz(t)__ B B
m, e k(zz(t) z,(t) lo)

Notice the sign convention:
z,(t)—z,(t)>1, the springis stretched
z,(t)—z,(t)<l, the springis compressed

Note that the force on each mass is in the direction to restore it to the equilibrium position. Notice also that the
force on mass 1 is equal and opposite from the force on mass 2. This must be so (Newton's third law)

This means that
dzz1 (t) dzzZ (t)
m +m =
togt? 2 ode?

0
Or

2

d
W(mlz1 (t)+m,z,(t))=0

Let us introduce what is called the center-of mass-coordinate.

2(t) = m,z, (t)+m,z,(t)
M
where M=m, +m,

We can then write the equation above as:

d’Z(t)
dt?

0

This means that the acceleration of the particle as a whole equals zero. (Remember we said that the force was
due only to the spring). Thus, the whole system moves through space at constant velocity (no acceleration).

The motion of the two mass system must depend only on the relative separation of the two masses, z, where
2(t)=z,(t) - z,(t)
We can take our original differential equations, divide them by their relative masses, and subtract them

d’z(t) d’z(t)  k ok o
o = at=alt) =) (2, -zt)-1)

2 1

2

d 1 1
F(zz(t)—zl(t)) = —k(—l+;zj(zz(t) —z,(t)-1,)

Using the definition of a reduced mass,
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3 THE HARMONIC OSCILLATOR

we can write this as

oAtk
dt’ y

(z(t) —/0)
If we now let

x(t)=z(t)—1,
we finally arrive at:

d’x(t)

dt?

+kx(t)=0

This is an important result. This result is the same as the mass attached to a wall, but the mass is replaced by the
reduced mass u. You can see that if m; or my — oo then u — m, or m; and the equation would be the same as
before.

The fact that m — u means that the frequency will now be

/k
0= |—
7
In general, if the potential only depends upon relative coordinates, then we can separate off the center of mass

motion and reduce the two-body problem to a one body problem with mass equal to u. We will therefore use u
in the rest of our discussion.

Before we go on to discuss the quantum mechanical harmonic oscillator problem, it is important to consider how
good such a harmonic oscillator ball and spring model is for a vibrating diatomic molecule. Below is a typical
internuclear potential for a diatomic molecule. At small internuclear separation, the potential rises sharply. This
is due to the repulsion of the positively charged nuclei. The well is due to the balance between the nuclear
repulsion and the attraction between nuclei and electrons. The flattened out part at large internuclear distance
z indicates that as a bond is stretched, the restoring force is no longer linear because the chemical bond begins
to break. The asymptotic energy is the bond dissociation energy.

We can superimpose a harmonic potential on this typical internuclear potential curve:

/ Repulsion of nuclei

Realistic diatomic potential

U(z)

Attraction between nuclei and
electrons

Harmonic potential
U(z)=1kx*

b
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3 THE HARMONIC OSCILLATOR

You can see that in some sense it is rather unrealistic to model this potential by a harmonic oscillator in that it
takes an infinite amount of energy to break the bond (i.e. go to an infinite internuclear separation). However,
the shape of the well near the bottom does a very good job of fitting the real potential, and as we will see when
we solve the quantum mechanics of this problem, most of the energy levels that one observes experimentally
are in the part of the well which is fit well by a harmonic potential.

So the harmonic oscillator approximation is good for small amplitude vibrations where Hooke's Law holds (i.e.,
those near the bottom of the well).

To put this into more mathematical terms, we could write our real potential function as a Taylor series in z about
the equilibrium position, /o.

U(z)= U(IO)+(dZ(Z)j (z—1,)+ i[dZU(Z)J (z—1, )2 + +i[_d3u(z)] (z—1, )3 +...
Z )y 2=l 2=y

210 d7? 31l dZ?

The first term determines the absolute energy at the bottom of the well. This is not very important since we
usually look at the difference in energy between two levels. We will therefore set it to zero.

The second term is the slope of the curve (first derivative), and by definition, this must vanish near the bottom
of the well.

If we let

2 3
[d ugz)] i and (d Uiz)] _,
dZ 2=l dz z=l,

U(z):%k(z—lo)z +%7(Z—IO)3 +...

we can write

or
1 1
UX)==k> +=yx* +...
2 6
where x=z-1;.
If the displacement from equilibrium is small, x is small and we can neglect the x3 term.

We are then left with
1
U(x)==kx*
(x) 5

which is the potential for the Harmonic Oscillator.

This shows that the Harmonic Oscillator should be a good approximation for small amplitude vibrations. One can
make corrections to account for "anharmonic" terms later.

It is important to realize what the meaning of k in this expression is, i.e. it is related to the curvature of the
potential well at the minimum.

3.2 Quantum Mechanical Harmonic Oscillator Problem

Remember | said that | would introduce the solutions to the problem first and look at their physical significance.
In doing so, | will introduce a few new concepts that we have not seen before. After having looked at the
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3 THE HARMONIC OSCILLATOR

solutions, we will go back and work through the mathematics required to arrive at the solution. The form of the
Schrodinger equation is more difficult, and we will need some new mathematical tools to solve it.

Even though we will not solve the problem right now, let us write down the Schrédinger equation.
Ay (x) = Ey (x)

R d'y(x) _
rr g U=y

Recall that u is the reduced mass and using it allows us to reduce a two-body problem to that of single body of
mass U.

We can put in

1
U(x) = =kx?
(x) 5

and rearrange to get

2
dy(x) +2—’u£E —%kx2

o W j"/(x) -0

This differential equation is more difficult to solve than those we have done previously in that it does not have
constant coefficients. There is no "simple" way to solve it. We will present the results first and then go back and
solve this differential equation.

It turns out that you only get well-behaved finite solutions if the energy is quantized. We will see shortly that this
quantization of energy occurs when applying the boundary conditions.

The result for the energy is:

En:h\/z(n+§)
Y7

=hon+3)=hv(n+3) n=0,1,2,3,...

where W= 5 and V:i 5
H 2z \ p

Note that v (or w) is the classical expression for the frequency of the harmonic oscillator.

| will superimpose these energy levels on the potential energy curve:
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3 THE HARMONIC OSCILLATOR

There are several important things to note about the harmonic oscillator energy levels:

1)

2)

The energy levels are equally spaced, in integral units of the classical frequency.

Think about what this means. The classical frequency is related to the force constant k

1 [k
v=— |—
2r\ u

Remember that k is related to the width of the potential (which is a parabola).
1
U(x) = =kx?
(x) 5

Larger k means stiffer spring (i.e. the energy rises faster with x the higher k is). So a stiffer spring
(narrower parabola) means that the energy levels are spaced more widely. Conversely, a smaller k
means a floppier spring (wider parabola) and more closely space energy levels.

The harmonic oscillator potential occupies a unique position among simple one-dimensional potentials
in that the energy levels are spaced evenly. Any potential that has more curvature than the harmonic
oscillator potential will have levels which increase in spacing as you go higher in energy. A good example
is the particle in a box whose levels increase as n?. Any potential which has less curvature than the
harmonic oscillator potential will have more closely spaced levels. As we will see, the hydrogen atom
potential has negative curvature and hence has energy levels that get closer together as you go up in
energy.

The second point to notice is that even when the quantum number n=0, there is still energy in the
amount of hv.

This is called zero point energy. Its existence is highly NON-CLASSICAL. It implies that if you were to cool
a system down to absolute zero and every molecule were in its lowest energy state, there would still be
some energy in the oscillator.

If there were not zero point energy, the system would violate the Heisenberg Uncertainty Principle. If
the energy were identically zero then the kinetic energy would be zero and hence the momentum would
be zero, p, =0 . The particle would be at the bottom of the well with no motion, so x = 0. This violates

the Heisenberg uncertainty principle, since you would know both p, and x precisely.

Another way to look at it is that the total energy of the oscillator can be written:

2
Py +lkxz
2m 2

E=

To have zero energy requires both p, and x to be zero (or their expectation values to be zero). This
would violate the Heisenberg Uncertainty Principle.

We have looked at the eigenvalues of the Harmonic Oscillator Hamiltonian (i.e. the energies of the stationary
states). Now let us look at the eigenfunctions. The eigenfunctions corresponding to the eigenvalues E, are non-

degenerate and are given by

w,(X)=NH, (a%x)ef%axz
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3 THE HARMONIC OSCILLATOR

where

kyt

a:?

The normalization constant N, is

and the Hn(a%x) are polynomials called Hermite polynomials
These polynomials are defined by the following equation or generating function:

n fzd_n
H,(&)=(-1)"e e

et
where & = aix
You can verify for yourselves that the first few Hermite polynomials are
H,o(8)=1
H,(&)=2¢
H,(£)=4" -2
H,(5) =88 -12¢
H,(£)=16& 4852 +12

Although we have not solved the Schrodinger equation for the Harmonic Oscillator yet, we can show that they
are solutions to the differential equation.

Recall that the Schrédinger equation is:

" dylx)
2u dx’

+%kx2y/(x) =Ep(x)

Let us show that y, satisfies this equation:

1
o 1,2

1 —Lax? z —Lax
W, (X)=NyH, (a*x)e * :(—j e?
V4
We need to differentiate it an plug it back into the differential equation.
1
d g
ayox) _ [zj (caxe )
dx T

1

dy, (x) = (2)4 (ozzxze_%‘”Z —ae ™ )

dx? T
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Substituting y, and its second derivative back into the differential equation we get

1

, 1
_h_(ZJ“ (aixe i
2u\r
Realizing that
kut
A
this gives:
1
Wk 4 i,
———/;XZ (Zj e:?
2u h V4
Rearing gives:
1
n 5@4 E(
2\ u\rx

Taking the definition of

k
o= [—

y7,

one finds:
1

1 4 “Lax?
—ha)(gj4e =k,
2 T

Hence we have shown that y,(x) is an

is:

E

1
o Eha)

The solutions to the Schrédinger equati
x is the displacement from equilibrium.

1

(Zj“ e—%ozxZ _ EO(

—Lax? 1
—qe”? ) +=kx*
2 T

1

j“e

hZ

LI ku
2uN W
4
j e

1
+=kx

2 2

“Lox

[24
- 2

(

T

(2

T

2
2

1
4
e
T

eigenfunction of the Hamiltonian and that the corresponding eigenvalue

on give the following picture for a vibrating diatomic molecule. Note that
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3 THE HARMONIC OSCILLATOR

There are several important things to notice about these eigenfunctions and related probability distributions:
1. They are qualitatively similar to the particle in the box.

e Simple oscillatory functions. The number of nodes increases with energy.

e Note that it will always be true that the lowest energy wavefunction will have no nodes, the
next wavefunction will have one, etc.

e Also note that here the lowest wavefunction is i, and not y, like in the particle in a box. This
results from the different boundary conditions.

e Inthe particle-in-a-box wavefunctions there are n-1 nodes. Here there are n nodes.

2. The even numbered wave functions are even functions about x=0 and the odd numbered functions are
odd about x=0.
even function: f(—x) = f(x)
odd function: f(-x)=—f(x)

3. There exists a finite probability for the quantum mechanical oscillator to exist outside the classical
boundary. Recall that the particle-in-a-box wave functions went identically to zero at the boundary, but
this was because the potential went to infinity. This penetration into the classically forbidden region is
called tunneling and we will elaborate on it in just a moment.

The probability distribution for y, of the harmonic oscillator is in stark contrast to the classical result.
Classically the oscillator spends most of its time at the turning points. However, as n gets higher, the
probability distribution begins to build up at the turning point and approaches the classical result. This
is an example of the Bohr Correspondence Principle, that in the limit of high quantum number, the
guantum mechanical result approaches the classical result.

2
Wl

Classical
result

3
[

| would like to digress briefly and discuss even and odd functions.

An even function is one in which f(—x) = f(x) and therefore for an even function:

T f(x)dx = ZT f(x)dx
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3 THE HARMONIC OSCILLATOR

An odd function is one in which f(—x)=—f(x) and therefore for an odd function:
[ fxax=0

Since the positive contribution to the area at x>0 exactly cancels the negative contribution at x<0, see the figure
below.
y ¥y

N oA

(a) (b)

Even function Odd function

Examples of even and odd functions:

f(x)=cos(x) Even
f(x)=sin(x) Odd
flx)=x Odd
flx)= e™ Even
flx)=e Neither

Not all functions are even or odd. Many have no symmetry about x=0.

Note: (even) (even) - even function

(odd) (odd) - even function

(even) (odd) - odd function
Example: X sin(x) - even function

(odd) (odd)
proof: f(x)=xsin(x)

f(=x) =(=x)sin(—x) = —x(—sin(x)) = xsin(x) = f(x)

The Hermite polynomials are even and odd functions, and this greatly simplifies doing integrations.

Note that the exponential part of the wavefunction, e ™ s even, so the harmonic oscillator wavefunctions
reflect the evenness or oddness of the Hermite polynomial. As we noted before, the Hermite polynomials are
either even or odd functions.
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3 THE HARMONIC OSCILLATOR

H,(&)=1 Even
H(5)=2¢ 0dd
H,(&)=4&% -2 Even
H (&) =8&° —12¢ odd

In general: n=even - H, is even
n =odd - H, is odd

This property will help us greatly in evaluating integrals. For example, integrals of the type
(x)= J v, (X)xy, (x)dx =0

We do not need to explicitly do the integral in this case because if , is even or odd, the integrand will be odd

and the integral equals zero.

The even/odd behavior of the harmonic oscillator wavefunctions can help us to verify that they are orthogonal
to one another.

Example: Prove that y, and i, are orthogonal to one another.

2 2

1 1
W, (x)=N,e ? v, (x)=N,(2a*x)e ?

© o 1, e
J.(//O (), (x)dx = NN, J. e? (a’x)e? dx

—0

=2N,N, o’ j xe ™ dx=0

since the integrand is odd.

Note: this general rule cannot be used to evaluate integrals of the type

J‘ ‘//"I(X)V/"Z (x)ax = NN, J- l-ln1(x)l'lnz(x)ewxZ dx

—0 —0

where Hp1 and Hy,; are both even. One must calculate the integral in this case.

3.3 Tunneling Effects

| would now like to make a brief digression into an aspect of the harmonic oscillator wave functions that |
mentioned earlier. Recall that when we looked at the Harmonic oscillator wavefunctions we observed that there
was a finite amplitude outside the classical potential, that is in a classically forbidden region. This corresponds to
the particle having a finite probability of being in a classically forbidden region. This phenomenon is called
tunneling.
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It arises from the fact that a quantum mechanical particle is a wave and does not respond like a particle to a
potential barrier. | would like to make a brief digression to consider tunneling a little further.

Recall the Schrédinger equation for the particle-in-a-box:

P
2m dx?

=Ey(x)

7 dy(x)
2m dx?

+Ey(x)=0

d’w(x) 2mE
T =0

The solution to this is a function which when differentiated twice must be multiplied by a negative constant to
fulfill this equation. Recall that the general solutions are complex exponentials, i.e.

) 2mE .
Hax where a= (note that o is real)

vix)=e

We then converted the complex exponentials to sines and cosines using Euler's formula.

Then we applied the boundary conditions that ¥(0)=0 and /(a) = 0 since the potential was infinite in the region

outside the box. Remember it was in applying the boundary conditions that the energy quantization was
required.

Consider now the following potential:

=0 x=a

In any one-dimensional potential like this where the potential abruptly changes from one region to another, one
simply solves the Schrédinger equation separately in each region since the potential (and hence the Hamiltonian)
is different in each region. One then has to require that the wavefunction from each region matches up smoothly
at the boundaries and that there are no kinks in the wave function (i.e. the slopes match up as well)

Let us look at the wave function in region | when the energy is less than V.

_ 1 dyx)
2m  dx*

V(0 = Ep(x)

d’w(x) N 2m(E

-V)
e 7 - (x)=0

Since E<Vy, the second term will always be negative. The solution to this equation is therefore
2m(V, —E
p(x)=e™ where k=, f% (k will always be real)

72



3 THE HARMONIC OSCILLATOR

Recall that before we got complex exponentials which are sines and cosines. Now we get real exponentials. Let
us match up the wave functions inside the box and outside in the case where the walls are finite.

We will specify the region number as a subscript of the k in the exponent, realizing that in a region where E<V,

/Zm(V —E)
k =k, = h—oz

whereas in region |l where V = 0 we have y(x)=e

+ikyx

2mE
k, = 2
h
In all cases, k is real.
Soin regions | - lll the solutions are
w,(x)=c,e” +c,e™

+ikyx

w,(x)=ce™ +c,e

—kyx +hyx

v, (xX)=ce”™ +cee
Consider region | for a moment. As x — —oo, for this function to remain finite, ¢;=0.
Thus w,(x)=c,e

Similarly in region Ill, to keep the wavefunction finite as x - o, cg = 0.

Thus,

Y (x)= Cseikmx

Let us then qualitatively look at the total wavefunction and see how it matches up at the boundaries.

x=0 x=a
Classically, a particle in such a well would simply undergo elastic collisions with the wall. If the energy is less that
the barrier Vo, there is zero probability of finding the particle outside the well.

Quantum mechanically, however, one way to view the situation is that the particle penetrates into the wall
somewhat (although it is not precise to talk about trajectories of quantum mechanical particles.)

Consider now the following potential.
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V=0

Consider a particle with energy less than Vo. In the right hand region, the solutions are sines and cosines. In the
well, they are sines and cosines. In the classically forbidden regions, the wavefunction will be real exponentials.

A wave function for a particle initially trapped in this potential well will decay exponentially into the barrier but
still be finite when it comes out the other side. So although the particle does not have enough energy to get over
the barrier, it can tunnel through the barrier and the probability can leak out.

To make this a bit closer to our experience, if tunneling were to occur on a macroscopic scale, one would see the
following. If you roll a ball up a hill but do not give it enough energy to reach the crest of the hill and go down
the other side, tunneling would correspond to the ball suddenly disappearing from the side you rolled it up and
reappearing on the other side of the crest, even though it did not have enough energy to get over the crest.

The probability of tunneling depends on the mass of the particle and the height and shape of the barrier, thus
one does not observe it for macroscopic objects. (Although the probability is finite, for all practical purposes it is
zero)

It turns out that tunneling phenomena are prevalent in many areas of physics, chemistry and biology. In biological
molecules, since electrons are so light, electron transfer among proteins or photosynthetically related
compounds involves electron tunneling.

A relatively recent experimental technique is called a tunneling electron microscope. It relies upon electron
tunneling to map out the wave functions of atoms on a surface.

A famous example in chemistry is that of the ammonia molecule. Ammonia can undergo an inversion process

illustrated in the figure below. At energies below the barrier, it can transform from one side to the other by
tunneling.

I R

Tunneling is strictly a consequence of the wave nature of the particle.

We assumed that the potential of a diatomic molecule can be approximated by an harmonic oscillator. This
implies that the deviation from the equilibrium distance has to be small. In contrast to the classical case, the
qguantum mechanical Harmonic oscillator does not have a well-defined vibrational amplitude because of
tunneling (the wave function decays exponentially) making it difficult to validate the approximation.

74



3 THE HARMONIC OSCILLATOR

However, one can use the variance or better the standard deviation as a measure. Remember that <x> =0 due

to symmetry, so we only have to calculate <x2> . We therefore have:

Let us calculate (x*) for v,

o 4 —ax
We have Wolx)=| —| e?
V3

in which case

From integral tables:

© ) 1 3
J.xze’“x dx = —[ﬁj
5 da\ a

Thus
1,
(%) :2(%}2 jed :i

Consequently,

It turns out that this root mean square displacement is small compared to the equilibrium bond length. It is
typically on the order of 5% of the bond length.

3.4 Molecular Absorption of Infrared Radiation

For a harmonic oscillator potential | had stated earlier that

E =h £(n+1j=hv[n+1j n=0,1,2,3,...
7 2 2

In absorbing a photon to make a transition from one harmonic oscillator energy level to another, one can show
that there is a selection rule in that An = +1.

Consequently, the transition will occur at a photon energy given by

k
AE=E,  —E =h|—=hwo=hv foralln.

M

Please note that infrared absorption occurs when the light is "on resonance" with the classical oscillator
frequency.
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Because the levels are equally spaced, transitions between any pair of levels will coincide. In general at room
temperature one observes only one vibrational transition, An=+1 originating in n=0 because most molecules are
in n=0.

Thus if we make a measurement of the absorption frequency we can find k and hence the potential curve since

we know how to calculate u from the masses of the atoms. In this way we are able to learn something about the
binding between the two atoms in the molecule.

3.5 Solution to the Schrodinger Equation for the Harmonic Oscillator

Recall that the potential energy of the harmonic oscillator is
Ux)==

The Schrédinger Equation is then

n d'y(x)

Zy dz += kx w(x)=Ey(x)

2
Let us multiply through by _h_/; and rearrange to get

d’y(x) +[2,uE ,uk

dx’ P )W(X) =0

Let us now make the following substitutions:

A :ZhLZE and o :I;—’l;
We are left with
d’y(x)

7 +(ﬂ —a’x? )z//(x) =0
X

Let's make one more substitution:

E=a’x
And hence

d_14d or d_Jal

dé o dx dx dé
And thus

d? d?

=a

dx*> d&
We now have

d’y(é) [ j

+ =0 Egn. |
e " =& |w(é) q
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This equation still does not have constant coefficients. One way to simplify this equation somewhat is to consider
the behavior of the differential equation as &—o. This will give us the restrictions on y when £is large.

For large &, & >>AJo thus

()

G =0 Eqn. I

We want our solutions (&) to approach the solutions of this equation at large values of &. The solution to Egn.
Il'is not simple either, since the coefficient of i is not constant. If we were to try a solution to Eqn. Il of the form

1,y(f§):eﬁérz one can show that in the limit of large &, =+ 1/2 gives a function that has the correct limiting
behavior.

We can show this by substituting (&) =€’ into Eqgn. Il to get

28" 4422 — £ =0
or

[£(ap7-1)+28]e" =0

Because ¢ is large we can ignore the second term in the brackets and see that f=+ 1/2 does give us a solution
to Eqgn. Il It is therefore a valid solution to Eqn. 1 in the limit of large & You could easily verify this.

However, note that for f=+1/2, w(&) blows up, and this is unacceptable for a wave function. Thus, we will look
1.
. . . . ) —¢ .
for solutions to the original equation (Eqn. 1), with limiting behavior w(£) > e 2 as& — . This is a type of

boundary condition in a sense, and as we will soon see, application of the boundary condition leads to
quantization of the energy.

We will therefore try a solution to the Schrodinger Equation (Eqn. I) of the form

w(E) =HEe *

where H(¢)is a function to be determined. We must impose the requirement on H(&) that it falls off quickly
enough at large & so that the exponential term dominates at large & and thus gives i the right limiting behavior.
We must take the second derivative of (&) substitute it back into the differential equation and get an equation
for the functions H(¢).

For the first derivative we have

dy(é) 22 dH(E) 2
T EH(&)e R
For the second:
PYE) o N LAHE) A L e dHE) e dHE) i
déz - H(é)e § dé e +§ H(é)e + déz e é dgr e
_(dPHE)  dHE) . ¢
-[ PR +[& 1]H(§)]e
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Putting this into our differential equation

dcy) (A . _
e +(a fjw(e‘)—o

gives

{d HiS) —Zf—dH(g) + [52 - 1}H(§)jezé2 + (g -&£ JH(é)ez;Z =0

d& dé
SHE)  dHE) [2 2
[ e 2% i {a 1}/4(\5)}9 =0

The exponential term does not equal zero, thus

FHE) , dHE) [ A -
e 2 T +[a 1}/(5) 0

Solving this differential equation is then equivalent to solving the original equation since we can find w(x) from
H(&) . There are no approximations here.

This equation still does not have constant coefficients; however this differential equation has been studied in
detail long before the development of quantum mechanics and is known as Hermite's differential equation. It
arises in problems of scattering light of various types of geometrical surfaces.

The standard technique for solving this equation is the so-called series method or power series solution.

In the series method, we assume H(&) can be written as a power series

HE) =a, +a,E+0,E% +a,E +a,é" +...

dH($) =0, +20,E+30,E7 + 40,8 + ...
dg

2

dd/;(zg) =120, +2-30,{ +3:40,5" +...

We now substitute the series for H(£) and its derivatives back into the differential equation and collect terms
with like powers of &:

{1202 +(£—1ja0}+{2-3a3 +(i—1—2-1ja1}§+{3-4a4 +(i—1—2-2jaz}§z {4-505 +£i—1—2-3jag}§3 +oo
o (04 o o

For this series to vanish for all values of &, each of the coefficients must vanish separately
A
1-2aq, +(——ljao =0
a
A
2-3a, +(——1—2-1)a1 =0
a

3-4aq, +(i—1—2-2ja2 =0
a

4.50, + i—l—Z~3Ja =0
o

3
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orin general

(n+2)(n+1)an+z+(£—1—2njan=O n=0,1,2,3,...
(24

We can rearrange this to get

=

(n+1)(n+2)™

n+2 T

This type of formula is called a recursion formula. It gives one coefficient in the series expansion of H(&) in terms
of a previous coefficient. This is a two-term recursion formula in that it skips by 2.

Thus, if one chooses two arbitrary constants, ap and a: then the recursion formula gives two independent sets of
coefficients

2 4
Heven :ao+02§ +a4§ +...
3 5
Hyy =0, +a,8" +a8 +...
Recall that the Harmonic oscillator solutions are either odd functions or even functions. This is where this
property arises in this system.

We can use the recursion relation to solve for all the even a's in terms of ap and all the odd a's in terms of a;.

Thus there are two unknown constants (as you would expect for a second order differential equation). The first
few of these relations are (for the even terms):

a——l /1—10
P 12le 0

(:14:—i i—1—2-2 012:i i—1 i—1—2-2 a,
3-4\ «a I\ a a

and for the odd terms:

a, :—i(i—l—lea1
2-3\«a

asz—i 2123 o,3=i A 12a|2o1223 a,
4.5\ a 5\« a

Now, as | mentioned before, we need to require H(£) to converge at large & sufficiently rapidly that the
1,

exponential part of the wave function, e 7 , will dominate. We must make the power series fit the boundary

condition y(¢£)—>0as & —> .

To do this, we need to look at the relative size of successive coefficients, a, at large n.
From the recursion relation:

Lim L/ = 2_n = 3
n—o an nz n

For large n, an+2 << an . This better be true if the series is to converge. But, does this converge fast enough to
satisfy the boundary conditions?
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To determine this, let us look at a function that we know blows up at large £. We can compare the rate of
convergence with our power series.

gn §n+2

& _ 2 s
e =1+&7 4.+ B +(§+1)!

+...

=1+E 4+, +b E"+bh L EM +

For large n we find

Li =2 - =
"% b, (2+1) (2+1)

bn+2 % I 1 2
n

2
So you can see that our power series in & has the same asymptotic behavior as e*

1.

1.,
, 2 £
If éim H(E)=e* then léim H(&)e ¥ =e?

This will not satisfy the boundary condition. We therefore must terminate the series after a certain number of
terms so that we have a polynomial of finite length as a solution rather than a power series.

Recall that our recursion relation is

(i—l—an
a
a . =—

T (ne (o)

You can see that if we let

(i—l—anzo
o

i:2n+1
a

And thus

This will make an+, be the first zero term and hence all the subsequent a's will be zero. It breaks off the series
after n terms. Thus, we will get an entire set of polynomials that have an increasing number of terms as the
integer n increases. This will insure that the function H(&) converges rapidly enough to satisfy the boundary

conditions.

Remember that A is related to the energy. Thus, to make the solution satisfy the boundary conditions, we have
guantized the energy levels. We have seen this same principle in solving the Schrédinger equation for other
simple 1-dimensional potentials. Here, the quantization comes in making the series converge.

Note that if n is even, the odd terms will not go to zero. However, since we have only even or odd solutions, this
is ok.

Let us now look at the energy levels:
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This yields
E . =h k (n + 1]

7 2

1

= th/assica/ (n + _J

2
1 [k
Where Vclass/cal Y
27\ u

The wavefunctions can be given by:

7151
v, (&) =N,H,(S)e ?
In making the function H(&) have the right behavior at large & we got quantization of the energy.

We forced the power series for H(£) to be finite by causing one of the coefficients to go to zero at a particular
n. All the higher terms will also go to zero. We therefore obtained a set of solutions H(&) that terminate after

different number of terms. You can see that this is what gives us different number of nodes in our wavefunctions
as we go to high quantum numbers.

If you look back at the expressions we obtained when we first set the coefficients of each power of £ equals zero,
and let (\M/a) - 1 = 2n, we get

2n(2n-4
04:1[1_1)(1_1_2.2}0:M%

4!

One can show that in general

H.(&)=a, {1—%5 + 22”(:!_2) & 2nin _62!)(”_4) & +} n=even
H,(&)=a, {5—2(’;'—1)53 + 2 (n—sll)(n—3)§5 —} n=odd

You can see how each of these truncates after a finite number of terms, which depends on the quantum number
n.

The values of ao and a; are arbitrary (since the overall wave function has a normalization constant). By
convention, a, and a, are chosen so that the coefficient of the highest power of &, thatis & is 2"

This gives

and
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2n!

n-1|
7

n-1
a,=(-1)2

B

Remember that | had given you another form for the Hermite polynomials a few lectures ago

n
d e

HiE)=(1)' e

This is more compact and easier to work with.

It is important not to forget that the full solution to the Schrodinger equation is

1, 1
V(&) =N,H, (e * where £ aix

3.6 Raising and Lowering Operators

If we want to calculate certain properties of the system, we will often encounter integrals of the type:
T ¥, (X)Aw,, (x)dx

We already saw that if we want to determine the average value of the position we have to evaluate:
<x> = Iy/;(x)xt//n (x)dx

Based upon the symmetry of the harmonic oscillator eigenfunctions it could be shown that this integral equals
zero. However if we are interested in the mean deviation or variance of the position we have to evaluate

<x2> = T v, (X)X, (x)dx

We solved this integral for the ground state eigenfunction. Although not difficult, it is a non-trivial calculation.
This is even more true if one were to evaluate this integral using the eigenfunction of higher vibrational levels.
When discussing the absorption spectrum | mentioned that there exists a selection rule An=+1. As you will see

in the spectroscopy course of next semester this selection rule follows from the evaluation of the following
integral:

[ v, 0xp, (xdx

Although one can calculate all these integrals explicitly, it would be worthwhile to have a way to evaluate them
more easily. This can be done by making use of the so-called lowering and raising operators.

Let us start with the Hamiltonian for the harmonic oscillator:

~2
p=Pe L
2u 2
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which can also be written as:

with = \/Z
7]

We see that the Hamiltonian contains only the operators f)ﬁ and X*. Since the operators p, and x are Hermitian
and thus have real eigenvalues it follows that the eigenvalues of the Hamiltonian are non-negative.

Let us at this point introduce the new operators:

and

Realizing that these new operators do not commute, i.e.
[6.6" |=n

we can write the Hamiltonian as:
A=0d'd+1ho

One can show that the following commutation relations hold between the newly defined operators and the
Hamiltonian:

[ﬁ,a] =—hwd
[/-“/,a*] =hwd'

Let us now write down the eigenvalue equation, which reads:

I:IuE =Eu,
In the past, whenever we wrote down such an equation the implication was that A contained some operators
and that the eigenfunctionu, was a function of x. In general, this does not have to be the case as we will see

later in the course when we will speak about spin.

If we have the commutator [Fl,é} acting on this eigenfunction, u, we find:

[Fl,&JuE =-hwdu,
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With the help of the eigenvalue equation, we can rewrite this as:

Héu, =(E-hw)au,
This equation states that if v, is an eigenfunction of the Hamiltonian with eigenvalue E then du; is also an
eigenfunction of H but with eigenvalue E —7iw , that is , with energy lowered by one unit of

c=hw

This implies that when operator 4 is applied to u, it generates an eigenfunction of the Hamiltonian corresponding
tothe energy E -/ .

We can therefore write

We need the constant C(E)here since even if u, is normalized, du, need not to be.
If we now apply the same operators to the state u,_, we find, in exactly the same way that du, _ or, equivalently,

& U,_, gives a state of energy £ —2h® . Thus by repeated application of operator a to any eigenfunction of the
Hamiltonian, u,, we can generate states of lower and lower energy. Appropriately, & is called a lowering
operator. There is a limit to how many times operator @ can be applied since the eigenvalues of the Hamiltonian
has to be non-negative, as we saw before. Thus, the lowering procedure must end at some point. Consequently,
there exists a ground state, which we will denote by u, , beyond which the lowering ends. So we have:

au, =0

0

Analogous to the lowering operator 4, one can show that the operator d" when applied upon u, increases the
energy to E + hw . One can thus write:

G'u, =C'(E)u,,,

The operator &' is appropriately called a raising operator.

We saw before that the Hamiltonian expressed in lower and raising operators takes on the form:
H=0é"d+1ho

If we apply the Hamiltonian onto the ground state eigenfunction u, we find the energy of the ground state.
I-Alu0 =E,u,

Putting in our definition of the Hamiltonian we find:
Au, =(06'd+1ho)u,

=wd'du, +1ihou,

—1 —
=shou, =Eu,
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We will now change our notation a little, namely, we will label the state by the number of energy units & =/%w
it has over the ground state energy, £, = 1/i@ . Thus, we can write:

S )
au, _Cun+1

where C and C'are n-dependent constants that can be determined by forcing the wavefunctions to be
orthonormal. Doing this (I will not show this here) one finds:

Gu, =Inhu,_
a'u,=\(n+1)hu,,

One should note here that dand G move up and down the same “ladder”. Hence, these operators are
sometimes also referred to as ladder operators.

We can now readily calculate the energy of a given state n. We have:

_ Ao
Hu, —(a)a a+7ha))un

t

— AT A 1
=wa au, +shou,

=wa'nhu, , +1hou,
:a),l(n—1+1)}"1x/n_}"zu,1 +ihwu,
= onhu, +3hou,

=hon+3u, =E, u,

This is exactly the same result we found before when we solved the differential equation, except that now we
have not solved any complicated mathematical equations. This way of solving a quantum mechanical problem is
closely related to the method proposed by Heisenberg.

With this at hand, one can now simply solve the integral given at the beginning of this section, something you
will do in the exercises.
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