Things You Should Know

Chapter 11: Quantum Mechanical Treatment of Simple Molecules

Be able to define the following terms (using words, equations, or figures):

valence bond theory exchange integral molecular-orbital theory bonding orbital bond order Hückel theory coulomb integral overlap integral molecular orbitals antibonding orbital hybrid orbitals

π electron approximation

Concepts and Exercises:

- 1. Have a good qualitative understanding of the Heitler-London valence bond method for H_2 . Be able to interpret physically the various integrals that arise and know where the major contributions to the stability of the chemical bond come from.
- 2. Have an appreciation for the molecular orbital treatment of H_2^+ . Be able to predict the bonding properties of diatomic molecules by filling molecular orbitals with electrons and determining the resulting bond order.
- 3. Know the nomenclature for molecular orbitals of diatomic molecules.
- 4. Be able to predict trends in bond strengths and bond lengths.
- 5. Be able to determine molecular term symbols from the electronic configurations of diatomic molecules. Use Hund's rule to determine which is lowest in energy.
- 6. Be able to find sp, sp^2 and sp^3 hybrid orbitals.
- 7. Be able to apply Hückel theory for simple conjugated systems
- 8. Be able to do all the assigned exercises.