11 Quantum Mechanical Treatment of Simple Molecules

One of the great achievements of quantum mechanics was a description of the stability of the chemical bond. It
turns out that this is mainly a quantum mechanical effect; classical mechanics cannot fully account for its stability.

Consider the case of H,. As you bring in two hydrogen atoms from infinity, their electron clouds begin to overlap,
and at some point there is a buildup of electron probability between the nuclei; the electrons feel the attractive
forces of both atoms. We want to see physically why this might occur.

First | will discuss the H, molecule itself, since it is one of the simplest examples of a chemical bond (H,* is actually
stable and is even simpler, but it doesn’t display some of the more general principles that | would to
demonstrate).

After discussing H, | will then talk about one-electron orbitals for molecules in the same way we had one-electron
orbitals for atoms. These orbitals are appropriately called Molecular Orbitals.

We will only scratch the surface here, since the treatment of the electronic Schrédinger equation for molecules
is a field in itself. My goals are (1) to be able to give you enough of a background in the quantum mechanics of
simple molecules to be able to understand molecular spectroscopy, and (2) to give you some basis for
understanding applications of these concepts to organic and inorganic chemistry.

The place to start a discussion of the quantum mechanical treatment of H, is with the Born-Oppenheimer
Approximation.

The Hamiltonian for the Hydrogen molecule is

S R n ze*(1 1 1 1 e? z%’
H=——(Vi+V§)—2—me(Vf+V§)— |+

+
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where A and B refer to the two nuclei and 1 and 2 to the two electrons.

As we discussed earlier in the course, because the nuclei are much more massive than the electrons, (M/m. ~
1835 for hydrogen and is higher for any other molecule), we can neglect the nuclear kinetic energy term from
this Hamiltonian.

We are saying that on the timescale of electron motion, the nuclei are essentially fixed. One then solves the
electronic part of the Schrodinger equation considering the internuclear separation R as a parameter (i.e. the
Schrodinger equation is solved as a function of R).

The Hamiltonian for H, then becomes (in atomic units):

- 1 1 1 1 1 1 1
H:——(Vf+V§) ——————— — ==
2 rlA rlB rZA rZB r;lZ R

Our general approach to solving this equation will be to apply the variational method using various types of basis
functions for the trial function.
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11.1 Valence-Bond method for H,

This approach was introduced by Heitler and London in 1927 and gave the first satisfactory explanation of the
stability of a chemical bond. Later this method was extended by John Slater and Linus Pauling.

We will ignore spin in this treatment because as we have seen, for any two-electron system, the spin and spatial
parts of the wave function are separable.

The valence bond method takes the following approach:

At large internuclear separation, an H, molecule looks like two separate hydrogen atoms. The ground state wave
function in this case would be

y, =1s, (1)153 @)

where 1S, denotes a 1s hydrogen orbital centered on nucleus A and 1S; a 1s hydrogen orbital centered on
nucleus B.

Because the electrons are indistinguishable, an equally good wave function is
v, =15,(2)1s, (1)

Heitler and London's approach was to take a linear combination of these two functions as a variational trial
function:

W =Cy, + Gy, =C 1, (D1s, (2) +¢,15, (2)1s, (1)
As we showed in our treatment of the variational principle, when we use a trial function that is a linear
combination of functions with the expansion coefficients as variable parameters, the problem reduces to solving

what we called the secular determinant,

H11 - ESn H12 - ESlZ _

H12 - ESlZ sz - ESzz

where | have used the fact that H>;=H1,.
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Solving this equation gives us an estimate to the lowest two energies (recall that the number of energies it
estimates is determined by the number of terms included in the trial function).

One can also get the coefficients ¢1 and ¢, by substituting the eigenvalues, E, back into the set of equations that
gave rise to the determinant.

Recall that the S terms are what we call overlap integrals. Let's first look at those along the diagonal.
Sy = [ [15, (D15, ()15, (D1s, (2) dr, d,
= [1s, ()15, @)dr, [ 15, (2)1s, (2)d,
=1

These terms are equal to 1 because the orbitals are normalized. (note that dr, and dr, represent the volume
element for electron 1 and 2, independent of the nucleus.)

The value of the integrals S;; will be the same.

The off-diagonal overlap integrals are somewhat different, however.
S, = HlsA (1)1, (2)1s, (2)1s, (2) dr, dr,
= [15, (013, (@), [ 15, (2)1s, (),

This is different from the diagonal term since the 1s orbitals in each integral are centered on different nuclei.

You can see that these two integrals are the same. Thus we can write S1,= 5> where S is a single overlap integral.
These integrals represent the overlap of the wave function on one nucleus with one on the other.
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE IMOLECULES

You can see that the region of overlap of these functions will be a strong function of R. Evaluation of the overlap
integral as a function of R is a fairly long (but not difficult) procedure.

The result is

R R?
S(R)=e [1+ R+?]

We still need to evaluate the other terms in the determinant.

Hy, = [ [15, (D)1, (2)H1s, (Dis, (2) dr, dr,
Recall that

|:| :_E(Vf +V§)_i_i_i_i+i+l
2 G.A G.B l’ZA I’ZB r312 R

You can see that this Hamiltonian is comprised of two one electron Hamiltonians plus a few additional terms due
to attraction of an electron by the opposite nucleus, the inter-electronic repulsion, and the nuclear repulsion.

Since the 1s functions are eigenfunctions of the one electron Hamiltonians, we can see that

H, :—l—lJrJ =-1+1J
2 2

where
J= HlsA 1)1s, (2)[—i—i+ 1, ljlsA (1)1s, (2)dr, dr,
rlB 2A r212 R

Recall that the energy of the H atom in atomic units is -1/2, so this looks like twice the H atom energy plus the
integral.

We can break up this integral to see its physical significance.

1s, (D) 1s, (2)f° 1s, (D[ [1s, (2)[° 1
J =—I| ‘; | drl—J‘| Br |dr2+”| A |r| :(2) drldr2+E
1B 2A 12

The first term is the coulomb interaction of the electron on nucleus A with nucleus B. The second term is the

interaction of the electron on B with nucleus A. The third term is the inter-electronic repulsion. The last term is
the nuclear repulsion. This integral is therefore called a coulomb integral.

| will not take the time to evaluate this integral here. The result, which will be a function of the distance R, is

2
J =R i+§_§R_R_
R 8 4 6

One could easily show that Hy;=Hj;.

The final term to evaluate is Hi»
H,, = [ [15,(D)1s, (2)H1s, (2)1s, () dr, dr,

If we were to substitute the Hamiltonian into the integral and use the fact that the 1s functions are eigenfunctions
of the 1 electron Hamiltonians one obtains
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

Hy, =-S*+K
where K = [ [15, s, (2)[-i-i 1. l]lsA(z)lsB @ dr, dr,
1A 2B ri.z R

K cannot be interpreted as a coulomb integral in the same way as J. We can rearrange this integral to get

1 1 1 1
K = j j 1s, (1)1s, (1)(—5—; + P +Ejls“ (2)1s, (2) dr, dr,

This integral arises because we are using a trial function that does not distinguish between the two electrons. (If
we used only one of the two terms in the trial function, this K integral would not have arisen.) Because of this, K
is called an exchange integral, and as such it is strictly a quantum mechanical property.

The evaluation of this exchange integral is pretty involved and | will not do it here. | will plot it as a function of R
in a moment.

We are left with the following secular equation:

-1+J-E  -S*+K-ES?| _
-S*+K-ES* -1+J-E

This gives us a quadratic equation with two roots.

EETREL
: 1S

Note however that -1 is the energy of two isolated hydrogen atoms (in atomic units). We can define AE as the
energy of H, relative to that of the isolated atoms. We then have

+
AE+:J_K
* o 1+8?

If we take £, and put it back into the equations that gave us the secular determinant, we can get the constants

¢1 and ¢; that go into our expression for the wave function.

We would find that

¢ =c, = 1
=C, = ——
2(1+8%)
This gives us
1
Vv, = (l/ll 'H//z)
2(1+5%)
Recall that
w, =15, (D1s5(2)
and

y, =1s, (2)158 @

You can see that this function is symmetric with respect to interchange of electrons 1 and 2, and hence its
designation as y~.
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

Similarly, E- would give us

— 1 _ —
y_= 2(1—82) (‘//1 '/’2)

This function is antisymmetric with respect to particle interchange.

We have neglected spin up to this point. Remember we can do this because it is a two-electron system and the
wave functions factor into a spatial and spin part. We can look at these functions and see what the spin parts
need to be.

Since s+ is symmetric with respect to interchange, the spin part must be antisymmetric.

Remember from our treatment of Helium, there is only one antisymmetric spin function involving a and f3, but 3
symmetric functions:

%[a(l)ﬂ(Z)—ﬂ(l)a(Z)] antisymmetric
a(a(2)
LLAQ2) symmetric

%[a(l)ﬂ(2)+ﬁ(l)a(2)]

Thus, to have the correct overall symmetry behavior, y: must go with the antisymmetric spin function, and y-
goes with any of the symmetric spin functions.

Now let us look at the energy eigenvalues AE, as a function of R. Recall that

+
AE+:J_K
*1+8?

and that J, K and S are functions of R. If we plot these we see the following

0.05 |-
J
0.00— \______.,—-—-—""'__'__
—0.05
—0.10 K
—0.15
=0.20 -
— 1 1 | |
0 1 2 3 4
Ria,
Figure 9-4. The Heitler-London valence-bond Coulomb (J)and exchange (K) integrals as a function
of internuclear separation R, All quantities are expressed in atomic units.
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

As you can see, it is the exchange integral that accounts for most of the stability of the H, bond (in the context
of the trial function we have chosen). Note that the overlap integral is a monotonically decaying function of R.
Because the exchange integral is a quantum mechanical quantity, the existence of the chemical bond is mainly a
quantum mechanical effect.

AE

(E — 2Eq)/eV

Experimental

Ria,

(The two curves in the figure above represent the electronic energy as a function of R. We could take this as a 1-
dimensional function and solve the vibrational problem!)

While the valence bond approach doesn't give very good quantitative agreement, it gives us a good physical
picture for the stability of the chemical bond.

We will now take a slightly different approach to solving the electronic Schrédinger equation for molecules. We
will still use the variational principle, but rather than starting with wave functions that represent two hydrogen
atoms at infinite distance (i.e. two atomic orbitals), we will construct one-electron molecular orbitals and then
put electrons into these one-electron functions.

We will derive the molecular orbitals themselves by considering the H," molecule. It is a one-electron diatomic
molecule, and will play the same role in molecular wave functions as H did for atomic wave functions. This way
of describing molecular bonding was pioneered by Robert Mulliken.

Robert Mulliken
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE IMOLECULES

11.2 Molecular Orbital treatment of H,*

By using an approximate treatment of H,", we develop the framework in which we can treat many electron
molecules. We want to find functions to serve as molecular orbitals in the same way the H atom functions serve
as atomic orbitals. We will begin by using the variational principle on H,*.

The Hamiltonian for Hy* is

A-—tve-i 1,1
2 rh R

We will try a linear trial function of the form
w =Cls, +C,lsg

This is called a LCAO-MO (linear combination of atomic orbitals-molecular orbital) where 1S, and 1S are 1s H
atom wave functions centered on nucleus A or B.

Remember from our discussion of the variational principle that the optimal values of ¢; and ¢, can be found from
a solution of the secular equation.

Hu—E Hy,—ES|
H,, —ES Hg-E|

where
Ho = [15,H1s,d7

Hg = [15, His,dr

S = [1s,1s,d7
We can see that Haa = Hgs since the Hamiltonian is symmetrical with respect to interchange of r; and rp.
Also, Hag = Hga by symmetry

H, = [1s,His,d7
Solving the secular equation (analogous to the way we did with the valence-bond method) yields two roots:

E — HAAiHAB
* 1+S

These two roots are upper bounds for the energies of the ground and first excited state of H,".
(We get the first 2 states because we included 2 terms in our linear trial function)

We can get the coefficients c1 and ¢, in our linear trial function by substituting the roots E. and E. back into our
system of linear equations (which we never wrote explicitly).

We get

1
—— = (15, +1
Ve ZiZS(SA %)
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

What we have found here is basically a one electron analog of the valence bond wave function that we used
earlier, however there is an important difference between the valence bond and molecular orbital approaches.

Let's digress for a moment to compare the wave function for H, using both the VB and MO approaches.
Recall the valence bond wavefunction for H, is given by

We =15, (V1S5 (2) +15, (2)1s5 (D)

Consider what the MO for H, might look like. If we put each of the two electrons in a one electron molecular
orbital, the wave function would be a product of those one electron functions:

Vo = (15,(1) + 15, (1)) (15, (2) +155 (2))

=1s, (115, (2) + 1 (1)1s, (2) +15, (D1s, (2) +1s5; (1)1s, (2)

The first two terms here are just the terms in the valence-bond wave function. The second two terms correspond
to electron configurations in which both electrons are on one atom.

Using electron dot formulas this would look like:

HAZ HB and HA :HB
or

H,H; and HHg
These last two terms represent ionic structures.

So Yvo =We t Vionic

Using a trial function like this gives a better estimate than the VB wavefunction alone. This suggests that the true
wave function has some ionic character.

Getting back to the solution of our problem we find for the energy:

E — HAAiHAB
* 1+S

If we were to look a little more closely at the integrals Haa and Has, we would see that we could break them up
into coulomb and exchange integrals in a similar manner to the valence-bond approach.

The result is

I+

AE, - 2K
s

-1

I+

where J' is given by

. 1 1
J —J‘lsA[—E+EjlsAdr
and K’ by

, 1 1
K'= IlsA [_r_+E]135 dr

A
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE IMOLECULES

You can see these are basically the one-electron equivalents for the coulomb and exchange integrals we had
earlier.

Note that the integrals are over the electron positions at a fixed value of R.
Thus E: is a function of R.
One can evaluate these integrals fairly easily, although we will not do it.

We can solve for different R and plot these as a function of R.

Energy

A brief digression about the notation of these states:

Each state of H," has a definite value of m. It turns out that [I:z, H } = 0. This will happen when the system has

cylindrical symmetry. The electronic energy depends only on |m]| since /,> appears in the Hamiltonian. We did
not write out the Hamiltonian explicitly to see this.

The absolute value of mis called 4: 1= |m|

One designates the states of H,* by the value of A in a similar way to the s,p,d,f notation for H atom states.

w

A= 0 1 2 4
o o /2 4

The designation s,p,d,f for H atom states refers to the value of /. The designation o, 7,d,¢ for molecules indicates
the value of 1= |m]|.

Recall that m tells us how many nodes the wave function will have in the ¢ coordinate. We will later see that 4
will also tell us something about the symmetry of the wave function.

We will also classify these states according to their properties upon inversion at the origin

Even = g for gerade 0Odd = u for ungerade
Finally, the H,* states are classified by the state of the H atom to which the molecule correlates at large R.
Thus, the lowest state of H,* would be designated oy 1s.

Why we labeled the bonding g and the antibonding o, will become clear in a moment.
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

If we look at the wavefunctions corresponding to these two potential curves, we can get a little better physical
understanding of why one is bonding and the other is antibonding.

If we look at v, =1s, +1s,

we see there is a buildup of electronic charge between the two nuclei, helping to cause mutual attraction. This
arises from constructive interference between the two wave functions.

For 78 =1SA —1SB
we see that the probability goes to zero in between the two nuclei, i.e. the electron density is zero here, which
gives rise to an antibonding orbital. (It will always be the case that antibonding orbital will have a nodal plane

midway between the two nuclei.) Consequently the state is labeled o, “1s

To determine whether an orbital is bonding or antibonding, one thus must look at the reflection of the wave
function through a plane midway between the atoms. If the wavefunction changes sign, it must have a node.

= This means there will be destructive interference and depleted electron density and will be antibonding
= If the wavefunction does not change sign, it will be a bonding orbital.

From this simple LCAO-MO picture, we can get some reasonable insight into the nature of the chemical bond.
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE IMOLECULES

11.3 Higher MO's of H,"

We now only have orbitals for the 15 two states. This was because we included only two terms in our linear
variational function.

We could have written
= Cl‘/lls (A) + CZ‘/IZS (A) + C3‘//2 Po (A) + C4l//ls (B) + CSl//ZS (B) + cs‘/’z Po (B)

Because of the symmetry of H, we would get a similar result to what we obtained previously--the coefficients of
the B orbitals will be +1 times those of the A orbitals.

v = s (A) + Sy (A) + Gy, (A) £ s (B) + G (B) + Gy, (B) ]

Consider for a moment the two electronic states that will dissociate to a 1s hydrogen atom. For this state, we
would expect c; to be greater than c; or cs. Certainly at large R this is true.

As a first approximation we can take
Vv =C [Wls (A) + Vis (B)]
which is what we had done before.

We don't know for sure that this is the lowest state, but it is a good guess.

The same arguments hold for the two states that dissociate to a 2s H-atom
v =g [‘/’25 (A i‘/’Zs(B)]

These functions are approximations to what we would get if we solved the secular equation of variational theory.

Another way to look at it, however, is from the point of view of perturbation theory. Taking the separated atoms
as the unperturbed problem, these two wavefunctions are the correct zero-order wavefunctions. In general,
molecular states will correlate with each state of the separated atoms, and rough approximations to their wave
functions will be given by fa + fs and fa - fs where fa and fs are hydrogen like wave functions.

Thus
V= CZ [WZS (A) il//ZS(B)]

will give 6 25 and o, *2s molecular orbitals.

Think about what this zero-order picture means. In the case of atoms, the use of H atom orbitals as zeroth-order
wave functions for many electron atoms says that to zeroth-order we are neglecting the inter-electronic
repulsion. Once we have the zeroth-order function, we can use Perturbation Theory to improve our energy and
wavefunction.

We are now doing the same thing for homonuclear diatomic molecules. Using H,* molecular orbitals, we can put
electrons in these orbitals in a manner consistent with the Pauli principle. This zeroth-order wavefunction
neglects inter-electronic repulsion.

If you then use perturbation theory, the first-order correction to the wave function will mix in contributions from
other functions in our basis set of atomic orbitals. However, only the functions closest in energy mix very strongly
(remember the energy denominator in the first order perturbation theory correction to the wave function).
Let's look qualitatively at the few next higher MQ's.
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

If we take the combinations of the 2po (2p,) H atom state, we get the following:

szo(A)_V/zpo(B) ‘/IZpO(A)Jrl//ZpO(B)

These orbitals are designated G since we are taking linear combinations of atomic orbitals with m = 0. These wave
functions have cylindrical symmetry about the z-axis.

Orbitals with m#0 are a little more difficult to visualize because the 2p; and 2p.; orbitals are complex.

We can use 2p, and 2p, , however these are not eigenfunctions of |:Z. Remember 2p, and 2p, are linear
combinations of 2p; and 2p.1. Thus, they won't have cylindrical symmetry about the z-axis

When we draw the linear combinations ¥ =y, (A)i!//zpx (B) we get things that look like:

58 33

7Z'u2px ﬂgsz

These are not cylindrically symmetrical about z. They have an extra nodal surface. They are not eigenfunctions

of L,.Thisis what one often sees as it orbitals. We can do this because any linear combination of eigenfunctions

of H with the same energy is still an eigenfunction of H . But it will not necessarily be an eigenfunction of L,.

We can now use these orbitals to discuss many-electron homonuclear diatomic molecules. If we ignore inter-
electronic repulsion, we can take the zeroth-order wave function of homonuclear diatomics to be a Slater
determinant of one electron H,* spin orbitals, using the LCAO-MO's for spatial parts.

The approximate relative ordering of these orbitals is

Ggls<0':15<0'925<<7:25<7zu2p+l,7zu2p_1<0'92p<7z;2p+1,7r;2p_1<032p
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Note that we have used the 2p.; and 2p_; atomic orbitals here to form our MO's rather than the 2p, and 2p,. Note
also that this order can be slightly different for different molecules.

Each bonding orbital fills before it's corresponding antibonding orbital (indicated by the *).
The energies of these orbitals indicated by the order shown above are determined using the variational principle.
However for two closely spaced levels, the order may be reversed. The energies of such molecular orbitals can

be verified experimentally using photoelectron spectroscopy.

Another way to think of the levels is in a diagram like this:

11.4 Molecular orbitals for multi-electron diatomic molecules

We can now begin to get some rough idea of molecular bonding in multi-electron diatomic molecules by simply
placing electrons in these orbitals.

We saw that H,* has one electron in a bonding orbital, cgls.

For H,, one puts 2 electrons in og1s with opposite spins. This gives (cgls)?
The two bonding electrons give a single bond.

Consider He; = (cg1s)*(c,*1s)? 2 bonding electrons 2 antibonding. = No net bond.
Experimentally, He; shows no significant minimum in the potential energy curve.
In a more formal sense we could write:

# bonds = % ( # electrons in bonding orbitals - # electrons in anti-bonding orbitals)

Let us pursue this concept a little further. If you promote one of the antibonding electrons in helium to a higher
state one has.

(Oels)*(cu*1s)*(cg25)"

This has 3 bonding and 1 anti-bonding electrons. It will therefore be chemically bound. This is correct. He; is
called an excimer in that it is bound in the upper electronic state, but not in the lowest (ground) electronic state.
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For Li; we have

(og1s)X(cu*1s)X(cg25)?

Two net bonding electrons lead to a single bond. Experimentally Li, is a stable molecule.

Sometimes its configuration is written

KK(Gg25)?

where the K denotes filled K lithium atoms.

We did not talk about this notation when we did HF-SCF. K, L, M represent the quantum numbersn=1, 2, 3. So
the n. The n=1 atomic orbitals constitute the K shell, n=2 the L shell, etc. . .

Let's jump to Nitrogen, N,. The configuration is

6 bonding electrons imply a triple bond, which is what is observed.

For O,

KK(cg2s)* (ou” 25)* (1w 2p)* (0g 2p)?

KK(cg2s)* (ou” 25)* (0¢ 2p)” (mu 2p)*(mg” 2p)

T

experimental evidence suggests these are reversed here.

In O, we have unfilled & orbitals. Hund’s rule says that the triplet state has lower energy. The triplet state is the
one in which the electrons are unpaired. Experimentally O, is paramagnetic because of the two unpaired

electrons! One can use the magnetism of air to measure oxygen levels.

One usually uses the term bond-order to indicate the number of pairs of electrons are involved in the bond. A
single bond has a bond order of 1. A double bond has a bond order of 2. etc.

As the table and figures below demonstrate, one can roughly correlate the bond order of a diatomic molecule
with its bond length. The higher the bond order, the shorter (and stronger) the bond.

Species Ground-state electron configuration Bond Bond Bond energy
order length/A kJ mol?

Hy* (ols)t 1/2 1.06 255

H, (o1s)? 1 0.74 431
He,* (c1s)’(c*1s)? 1/2 1.08 251
He, (c1s)Y(c*1s)? 0 - -

Li, KK(c2s)? 1 2.67 105
Be; KK(c25)?(c*2s)? 0 - -

B KK(o2s)*(c*25)*(n2p)? 1 1.59 289

C KK(c2s)*(c*2s)X(m2p)* 2 1.24 599

N2 KK(c2s)%(c*2s)%(n2p)*(02p.)? 3 1.10 942

0, KK(c25)%(c*25)%(n2p)*(02p.)3(r*2p)? 2 1.21 494

F2 KK(c2s)%(c*2s)3(n2p)*(c2p.)*(n*2p)* 1 1.41 154
Ne; KK(c25)(c*2s)3(n2p)*(c2p,)H(n*2p)*(c*2p,)? 0 - -
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You can clearly see that this simple molecular orbital picture allows us to make good qualitative predictions about
the properties of molecules.

To be more quantitative, one can use the Hartree-Fock method for multi-electron diatomic molecules in an
analogous way to its application to multi-electron atoms. (I won’t discuss this in detail, but | would like to mention
the terminology that is used.)

In using the HF method for molecules, we keep the concept of molecular orbitals that can be filled with two
electrons each (consistent with the Pauli principle), however these orbitals are constructed from flexible
functions that allow us to vary the parameters in such a way that we can reach the Hartree-Fock limit.

In our simple approach up to now, which is often called the LCAO-MO method (linear combination of atomic
orbitals-molecular orbital), we took each molecular orbital to be a linear combination of an atomic orbital on

each nucleus in such a way that the atomic orbitals maintain their identity.

As we started adding atomic orbitals to get higher molecular orbitals, | wrote things like
Y = [ s (A) +Cro (A + Gy (A)+.. £ s, (B) + Gy (B) +Cry (B) + ...

| indicated that to a good approximation, one coefficient would be dominant for each state of the separated
atoms. To a first approximation we neglected the others.

Thus, | indicated that the first two states could be approximated as
Vi, =6 [Wls (A) Ty, (B)]

and hence we called this a 5z1s molecular orbital.
The same arguments hold for the two states that dissociate to a 2s H-atom
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

W34 =G, [‘/’25 (A) £y (B)]
We called this a 325 orbital.

However, if we want a more accurate estimate of the energy by using the HF method, we have to include not
only the coefficients we neglected, but also make the atomic functions themselves flexible enough so that we
can reach the HF limit. In doing this, the molecular orbitals lose their identity (in terms of the atomic orbitals)
since the coefficients of many atomic orbitals can become significant. In this case, one often uses a different
manner to label the molecular orbitals.

Correspondence between various notations for molecular orbitals

Simple LCAO-MO HFSCF-LCAO-MO
ols Cgls log
c'ls Guls loy
o2s Gg2s 20
c*2s Gu2s 20,4
2Py Tu2Px Imy
n2py Tu2py Imy
o2p; Cg2p; 30,
2P« Tg2Px Img
n2p, Tg2pPy Img
o*2p; ou2p; 304

11.5 Molecular term symbols for diatomic molecules

Ina manner similar to that for atoms, the electronic states of diatomic molecules are designated by term symbols.
In the case of atoms, | indicated that although the individual spin and orbital angular momentum quantum
numbers of the electrons are no longer good quantum numbers (i.e., the individual / and s are not conserved),
the sum L and the sum S of all the electrons are still a good quantum number (if we ignore spin orbit coupling).

In the case of diatomic molecules, even if there is only one electron (i.e., H>* ), the | quantum number of the
individual electrons is not a good quantum number. However, because of the cylindrical symmetry, m, remains
a good quantum number (for H,*) and I, = m; h is a conserved quantity.

Once we go to multi-electron diatomic molecules, /, of the individual electrons is no longer conserved and thus
myis no longer a good quantum number. However the sum, M, of all the electrons is still a good quantum number.
Also, the total S for the electrons is a good quantum number. Thus we can label the states of a diatomic molecule
by M, and S.

One constructs a molecular term symbol in an analogous way to the atomic term symbols:
2541 M| orsince A=|M,| we canwrite 24

Where Mi=mp+mp+... and Ms=msg+msa+. ..

and S is determined from the values of M.

Note that the difference from the atomic case is that the main symbol represents a scalar quantity, | M, | rather
than a vector quantity L.

The various values of | M, | are associated with capital Greek letters according to
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A Letter
0 z
1 I1
2 A
3 (O]

(Note that these letters correspond to the S, P, D, and F in the atomic case.)

Examples of molecular term symbols are ', °I1, and %A.

The determination of the molecular terms symbols from molecular-orbital electron configurations is simpler than
the atomic case since M, is a scalar quantity. However, it is important to remember that S is still a vector quantity.
I illustrate this procedure below with 3 examples.

Consider the case of H,, which has an electron configuration of (c1s)?

The occupied G orbitals have m;=0.

Thus M =0+0=0

The two electrons must have opposite spins in order to satisfy the Pauli principle, thus
MS:+E—E:O
2 2

Because there is only one value of Ms, then S must equal 0.
The terms symbol will therefore be: T

Now consider the case of He,*. The ground state electronic configuration is (c1s)?(c*1s)%.
One can construct a table of the possible values of m;and ms.

my; Mgz my; Mms; mys Mgz M, Ms
0 +% 0 -% 0 +% 0 +%
0 +% 0 -% 0 -% 0 -%

The fact that M, = 0 says that we have a X state.

The Ms =t 1/2 corresponds to the two projections of S= 1/2. This means 25+1 = 2 and we have a doublet state.
So the term symbol for He,* is 2X.

These first two examples are quite simple since there is only one possible value of S.

The next example, By, is a little more complicated and illustrates the general scheme that one should use.
The electron configuration for B, is

(c15)%(c*15)? (625)*(c*25)?(n2p)?

The first 4 molecular orbitals in B, have M,=0 and Ms=0, and thus we need to consider only the last two electrons.
(Recall that in the atomic case, we also ignored filled subshells.)

Each of these last two electrons is in a 1t orbital and can have m;= +1 and m; = +1/2 . One can construct a table
of the possible values, keeping in mind the indistinguishability of the electrons and the Pauli principle.
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mi Msy mi; ms; M, Ms
1 +1 +% +1 -% 2 0
2 +1 +% -1 +% 0 1
3 +1 +% -1 -% 0 0
4 +1 -% -1 +% 0 0
5 +1 -% -1 -% 0 -1
6 -1 +% -1 -% -2 0

Entries 1 and 6 in the table correspond to | M| = 2 and Ms = 0. This gives rise to a 'A (singlet delta) state.
Entries 2, 3, and 5 correspond to M;=0 and S=1, and so we have a 3% (triplet sigma) state.

Entry number 4 has to M,=0 and Ms=0, an thus it corresponds to a !X state.

Thus we have 3 possible molecular states for this electronic configuration of B,: 'A, 3%, and 'X.

Hund'’s rules apply to molecular electronic states as well as to atomic states. Hund’s rule says that the state with
the largest spin multiplicity will be the ground state. Thus, we predict that the ground state of B, is a 3% state.

(For the X states of homonuclear diatomics, there is also a right superscript of + or - that indicates the symmetry
of the wave function with respect to reflection in a plane containing the internuclear axis. We will not concern
ourselves with this for the moment.)

11.6 MO treatment of Heteronuclear Diatomics

The treatment of heteronuclear diatomic molecules is similar to that of homonuclear diatomics.

In the case where the two atoms in a diatomic have atomic number that differ only slightly, such as in CO, we
could consider the molecule being formed from the isoelectronic molecule N, by a gradual transfer of nuclear
charge from one nucleus to the other. During this hypothetical transfer, the original N, MO’s would slowly vary
to give finally the CO MQ’s. We therefore expect the CO molecular orbitals to bear some resemblance to those
of Nz.

In a case such as this, the symbols used for the MQO’s are similar to those for homonuclear diatomics.

However, in the heteronuclear case, the electronic Hamiltonian lacks the symmetry of the homonuclear diatomic
case, and hence the g, u property of the molecular orbitals disappears.

The correlation between the N, and CO subshell designations is

N> | log | loy | 20, | 20y | Imy | 30, | 1mg | 304
co | lo | 20 | 3o | 4o | In | S5c | 2n | 6c

The MO’s of the same symmetry are numbered in order of increasing energy. Because of the absence of the g, u
property, the numbers of corresponding homonuclear and heteronuclear MQ’s differ.

Shown below is a a sketch of a contour of the CO 1t MO taken from an SCF calculation. Note its resemblance to
the m MO that | had drawn earlier for homonuclear diatomics.
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o
o
4

A Hartree-Fock SCF calculation for the expansion coefficients of this molecular orbital in terms of Slater atomic
orbitals gives

1m =0.469 (2pnc) + 0.771 (2pmo)
This can be compared to the corresponding bonding orbital of N, which is given by
1m, = 0.624 (2pm, + 2pmy,)

You can see both from the picture of the orbital as well as in the SCF calculation that the amount of atomic orbital
centered on the carbon and the oxygen are not the same. This makes sense since the symmetry is now broken
and the charge is different on the two nuclei. (Note, however, that the wave functions are not normalized).

11.7 More on Valence-Bond Theory

| would like to say a bit more about valence-bond theory. Although this approach is not accurate enough to be
used for computations, it provides some important qualitative notions about chemical bonding. More
specificially, valence-bond theory guides our intuitive ideas regarding Lewis formulas, resonance formulas, etc.
In our treatment of H,, we constructed a wave function that had one electron on each atom.

If we let
Is,a() 1s,(1)
Vi hs,a(2) 15,8(2)
and
15,60 1s,a(1)
V2 1s,52) 15,0(2)

each of which represent H, with one electron on each atom, then we can use

Y =0 +Gy,
as a trial function and minimize the energy with respect to c; and c,.
The ground state wave function is given by

— 1 —
w——2(1+52)(1//1 ¥,)

(Note that the problem is formulated differently than our original treatment, and the definition of ¥; and ¥,

are different, but if you multiply out these determinants and compare the result to the one we had before, you
will see that it is the same).

200



11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

Consider now the molecule LiH. One of the (unnormalized) Slater determinants in the valence bond wave
function of LiH is of the form

Vi) v Q) vaia@) v SO

_ | (2) viuB@2) voa(2) v B(2)

' ¥1:23) ¥iiBR) v v BQ)
viwia(4) v B) vga(4) i B(4)

We can abbreviate these Slater determinants by only listing the elements on the diagonal. This would give the
notation:

Y= |‘//15Lia(1) v10uB2) W0 Vi (4)|

The other contribution to the valence-bond wave function that is distinct (not just changing labels on the
electrons) is

v, =@ v B2 v BB wrga(d)

Thus we can write the valence-bond wave function as
l//cov = Cll//l + Cz‘//z

where | have used the subscript ¥, to indicate that we have chosen configurations that correspond to covalent
bonding where the electrons are equally shared between the bonded atoms.

A variational calculation would give c¢1 = - ¢, since there should be no preference for which electron has spin up
or down. Thus we have

Ve = |l/llsLia O viuB@) vyyia@) wip (4)| - |V/15Lia(1) viiB2) v BR) Vi a(4)|

If we were to use this function to calculate the bond length and bond energy, we would get values of 3.01 au and
-215.98 au respectively.

This should be compared to the experimental values of 3.02 au and -219.71 au.

One reason for the poor agreement in the energy is that we have not allowed for any ionic character in our
valence-bond wave function.

We can include the ionic structure Li*H into our valence-bond treatment by using
Vionic = |‘//1s|_ia(1) B2 i) v (4)|

Note that this wave function describes Li*H in that there are two electrons on Li* and two electrons on H".
We can now take a linear combination of Wy and Wionic and write

\PVB = Ccov\Pcov + CionicLPionic

The inclusion of the ionic term improves the energy calculation to a value of -217.0 au.
Because the two 1s electrons in the lithium atom do not play a great role in the formation of the bond in LiH, it

is a convenient, common approximation to ignore inner-core electrons in the valence-bond wave function and
to consider only the bonding, or valence, electrons. In this approximation we would have
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‘//cov:|‘//2sLia(1) WlsHﬁ(2)|_|‘//25Liﬁ(1) V/lsHa(Z)|
and

'//ionic :|V/15Ha(1) WlsHﬂ(2)|

The neglect of these inner-core electrons is not so important for LiH, since this is a small enough molecule that
it can be solved to a high degree of accuracy. However as we will see shortly, this approach becomes very useful
when discussing larger systems.

The square of the expansion coefficients, c.o,”> and Cionic?, give some indication of the ionic and covalent character
in the molecule. However, one must be careful with this interpretation. The precise values of these coefficients
depend on the form of the atomic orbitals that are used.

The idea of introducing ionic terms into valence-bond wave functions nicely illustrates the concept of resonance
that you learned in first year chemistry and organic chemistry. Quantum mechanically, we see that if we can
write two or more sensible Lewis structural formulas for a molecule, then the wave function for that molecule is
a linear combination of these structures and the “true” picture is some intermediate structure. The variational
principle, which gives the numerical values of the coefficients in the linear combination, provides an indication
of the relative importance of various possible Lewis formulas.

Thus, the qualitative ideas about resonance structures have a quantitative basis in quantum chemistry. (This is
true about many of the qualitative ideas presented in organic chemistry.)

The extension of the valence-bond method to non-linear polyatomic molecules is straightforward in principle.
Consider the molecule H,0. The electron configuration of the oxygen atom is
152252 2p,t 2p,t 2p,2

suggesting that the unpaired 2p,* and 2p,* electrons are available for bonding with the hydrogen atoms.

From this simple valence-bond picture considering only covalent terms, one would expect the bond angle in H,0
to be 90°, since the 2p,! and 2p,* orbitals lie along the x and y axes and we would expect the hydrogen 1s orbitals
to maximize the overlap with the oxygen 2p orbitals.

The prediction of a 90° H-O-H bond angle is in poor agreement with the measured bond angle of 104°.

However, if one introduces ionic terms in the wave function, the hydrogen atoms will develop some positive
character and repel each other, giving a bond angle closer to 104°.
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For the corresponding molecules H,S, H,Se, and H,Te, the electronegativities of the sulfur, selenium, and
tellurium atoms are such that the ionic terms contribute progressively less. In this case, the predicted angle
becomes progressively closer to the prediction of 90°.

If we go on to the case of NHs, the valence-bond approach predicts that the H-N-H bond angles are 90° as
compared to the experimental value of 107°. Once again, the situation can be improved by introducing ionic

terms, however, this approach clearly fails us when we get to methane, CHa.

Clearly, the carbon electron configuration of 1s? 2s% 2p,! 2p,! does not explain (using a valence-bond picture) the
well-known tetrahedral bonding in methane and other saturated hydrocarbons.

An approach that better describes the directionality of chemical bonding involves a consideration of hybrid

orbitals , a subject that you will have likely discussed both in introductory chemistry and in organic chemistry.
We will treat this subject from a quantum mechanical point of view.

11.8 Hybrid Orbitals

Like valence bond theory, the concept of hybrid orbitals is not particularly accurate in a computational sense,
but it provides an important qualitative picture from which we can make predictions about the geometries of
simple molecules. | will briefly introduce some of the mathematical background behind hybrid orbitals.

11.8.1 sp hybrid orbitals

Consider first the molecule beryllium hydride, BeH,. The two Be-H bonds in this molecule are equivalent and the
H-Be-H bond angle is 180°.

The ground state electron configuration of Be is: 152 25?
To represent the two equivalent Be-H bonds in BeH; that make an angle of 180° with respect to one another, we

will take a linear combination of the beryllium 2s orbital and one of the beryllium 2p orbitals (i.e., the 2p,). We
can do this for each of the 2s electrons since the orbital holds two electrons. Thus, we have

52 a:lZSBe +b12sze

f' =9, 2SBe +bz 2 Pzse
Linear combinations of orbitals on the same atom are called hybrid orbitals.
(Recall that if we neglect inter-electronic repulsion, the s and p orbitals on an atom would have the same energy,
so in this limit, these hybrid orbitals would still be eigenfunctions of the atomic Hamiltonian. In reality, the s and
p do not have the same energy, however this approach still provides a useful qualitative picture of molecular
bonding.)
The two bonds in BeH; are described by the following bond orbitals:

p=cls, +c,¢

§'=clls, +cié"
where the 1sa and 1sg are the 1s orbitals of the two hydrogen atoms.

So the bond orbitals are linear combinations of an atomic orbital on the hydrogen atom and a hybrid orbital on
the beryllium.
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We will now determine the form of the two hybrid orbitals £and &' so that gand ¢’ describe two equivalent
bond orbitals that are directed 180° from one another.

We can approximate the 2s and 2p, orbitals of the beryllium atom by the Slater orbitals

/ 1
=,[—R(r
l//ZS 472_ ()
= ,/i CosSAR(r)
Yap, 4x

where for simplicity | have used the same functional form for the radial part of the wave functions. (Recall that
the angular part is simply given by the spherical harmonics). The constants in front insure that the functions are
normalized.

If we substitute these functions into the expression for £ we get

R
5=%(a1 +\/§b1 cosa)

&‘

If a; and by are both positive, then £is directed along the positive z-axis, and we can choose this to be the case
since we are free to orient the molecule in space as we wish.

The other hybrid orbital, &' is then given by

&= %(a2 ++/30, cos&)

Recall that the original s and p functions are orthogonal, and when we take a linear combination of these orbitals
to get another set of two orbitals, £and &', it is convenient to require that £and &' be orthogonal.

In this case we have that:
Vs
0

If we have chosen our radial function to be normalized, then

E(r,0) & (r,0)rsinfdrddde =0

O3
oY

J'Rz(r)rzdr =1
0

Combining this with the expressions for £and &' gives us for the first integral

O =

(31 ++/30, (3056’)(a2 ++/30, cosé’)sin&dH:O

The evaluation of this integral is straightforward and gives
a3, +hb, =0

Because we have taken a; and b; to be positive, then a; and b, must have opposite signs, and this causes &' to
be directed along the negative z-axis, 180° from &.
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Because the two Be-H bonds in BeH; are equivalent, we require that the two hybrid orbitals have the same shape.
Thus we require that a1=a; and that by = -b,.

Furthermore, because a,a,+bb, =0

we find that a=1tb

Finally, if the two equivalent orbitals are normalized, then

1

E=—=(2s+2p,)

I\)'_‘%d

(5’:7(25—2pz)

Because these hybrid orbitals are made up of a 2s orbital and one 2p orbital, they are called sp hybrid orbitals.

The BeH, molecule is formed by overlapping a hydrogen 1s orbital with each of the sp hybrid orbitals.
The electron configuration of BeHs in this bond-orbital description is therefore

K (¢')

where ¢ and ¢’ are the bond orbitals described earlier. In this picture, a chemical bond is described as two
electrons of opposite spin occupying a bond orbital.

11.8.2 sp?hybrid orbitals

Consider now the case of BHs. The three B-H bonds in BH; are equivalent and lie in a plane, directed 120° from
each other.

To describe the three equivalent bonds in BH3, we must construct three hybrid orbitals on the boron atom. We
will construct each of these orbitals as a linear combination of one s and two p orbitals

& =a,2s+b2p, +c.2p,
&, =2a,25+b,2p, +¢,2p,
& =a,25+b,2p, +¢,2p,

where the 2s and 2p; orbitals are the same we used in the previous example, and the 2py is a Slater orbital given

by:
/3 ino R
Yoy, = Esm cospR(r)

Because these hybrid orbitals are constructed from one 2s and two 2p orbitals, they are called sp? hybrid orbitals.

Because we can choose the overall orientation of the molecule with respect to the axis system, we can let one
hybrid orbital lie along the z-axis. In this case, the contribution of the py orbital will be zero, and

él = a2 23 + b12 pz
In analogy to the case of BeH,, because the s orbital is spherically symmetric and the three hybrid orbitals are

equivalent, we shall take equal contribution of the 2s orbital to each hybrid orbital.
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This meansthat a1=a.=a3

Furthermore, because there is one 2s orbital to be distributed among the three hybrids, it must be true that
a’+ai+a’=1

(Note: This expresses the conservation of the 2s orbital. Whenever we take three orthogonal functions and take

linear combinations to make three others, there will always be both a normalization condition and what I call a
conservation condition, meaning that the total amount of the original orbitals must be conserved.)

From these two conditions we find that
—a, =a, =—
&a=a= NG

If we now substitute a; into & we have

L

§1=\/§28+b12p2

Because &; is normalized, we have that

%+bf:1
2
.

1 2
fl :ﬁ25+ §2pz

The second hybrid orbital is

Thus

L

52\@

2s+hb,2p, +¢,2p,

The requirement that &; and & be orthogonal leads to the condition that
a,a, +hb, +cc, =0

Note that this is the same condition that we had in the previous example. If we have a set of orthogonal functions
and take linear combinations of them to get a new set of orthogonal functions, this condition will always arise. It
is simply the condition of two orthogonal vectors.

With ¢; = 0, this condition leads to
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Thus

Z+C22px

1 1
& :$25—%2p

By requiring & to be normalized we have

We therefore have that

1 1 1
é::Q§25—3E291+3?2px

Once we have & and &, , we can find many expressions that relate the remaining coefficients to those that are

not yet determined.

For example, we have
b +bZ +b2 =1
cZ+ci+c=1
together with the orthogonality conditions
aa,+bb,+cc, =0
a,a, +b,b, +c,c, =0
and the normalization condition

al+bf +c2 =1

At this point, we have an over determined system, and we need not use all of these relations. | will use the

orthogonality conditions.

From the first of the two orthogonality conditions, we have
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a,a, +bb,+cc, =0

From the second orthogonality condition
a,a, +b,b, +c,c, =0

1

1+1+—c =0
36 2°
6oL

2

Thus
1 1 1
=—=25———=2p, ——2
53 BRI TR

I will leave it as an exercise for you to demonstrate that these three hybrid orbitals lie 120° apart from each other.

11.8.3 sp? hybrid orbitals

From what we have done up to this point, the development of the four sp* hybrid orbitals should directly follow.
By choosing the first to lie along the z-axis and using the orthogonality and normalization relations, you can easily
find the coefficients of the following orbitals.

& =a2s+b2p +¢2p, +d,2p,

&, =a,25+b,2p, +C,2p, +d,2p,
& =a,25+b,2p, +¢32p, +d,2p,
¢, =a,2s+b,2p, +c,2p, +d,2p,

You can then show that they have the shape of a tetrahedron. | will leave this as an optional exercise.

11.9 m-electron approximation and Hiickel molecular orbital theory

| would like to take our discussion of simple molecules one step further to relate the quantum mechanical
treatment that we have developed to some of the concepts that you will encounter in organic chemistry. | will
not give a very sophisticated treatment but rather introduce some of the basic notions that will help you to better
understand what you do in organic chemistry.

Our discussion of hybrid orbitals leads us to consider the case of unsaturated hydrocarbons. Consider, for
example, the molecule ethylene, C;H,. It is planar and has all of its bond angles equal to 120°. One can describe
the structure of the molecule by assuming that all the carbon atoms form sp? hybrid orbitals as shown in the
figure below:
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s Is

Figure 9-28. The a-orbital framework of the ethylene molecule.

The CH bonds result from the overlap of the 1s hydrogen orbital with an sp? carbon hybrid orbital. Part of the CC
bond results from the overlap of the two sp? carbon hybrid orbitals.

Each of the bonds shown in the figure above are obonds. This is because the carbon sp? hybrid orbitals are planar
with no nodes about their respective bond axis and the hydrogen 1s orbitals have no nodes since /=0 and m=0.
(Note that when we are considering the symmetry of these bonds, in the present case a obond, we are
considering the local symmetry of each bond and not of the overall molecule)

The representation in the figure above is therefore called the obond framework of the ethylene molecule. If we
let this framework be in the x-y plane, the carbon atomic orbitals used to construct the hybrid orbitals would
have been the 2p, and the 2p, orbitals. This leaves the two carbon 2p, orbitals available for further bonding, and
their overlap can contribute to the C-C bond, as shown below:

Figure 9-29. A schematic representation of the = bond in the ethylene molecule.

The charge distribution along the C-C bond due to the overlap of the 2p, orbitals produces a it bond.

We are developing here a o—x description of unsaturated hydrocarbons. It turns out to be a fairly good
approximation to treat the it electrons as moving in a fixed, effective, electrostatic potential due to the electrons
in the B framework. This approximation is called the m-electron approximation. It can be developed from the
Schrodinger equation, but we will simply accept it as being physically intuitive.

In 1930, Eric Hiickel developed a treatment of conjugated and aromatic molecules that has found wide success
in organic chemistry. This theory, which is referred to as Hiickel molecular orbital theory , is based upon the r-
electron approximation. The o electrons are described as localized hybrid bond orbitals and the rt electrons are
described by molecular wave functions that extend over each of the atoms that contribute a it electron. Thus,
the it electrons are delocalized.

I will illustrate this technique by considering some specific examples.
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11.9.1 Ethylene

Let us first consider the simple case of ethylene.

The oframework of ethylene is shown on the previous pages. Each carbon atom contributes a 2p; orbital to the
delocalized T orbital, and as in the case of the molecular orbital treatment of H, we write

V., =Cn+Cx,

where y1 and y, are the carbon 2p; orbitals. It is important to realize that the Hamiltonian operator in this theory
involves the effective potential due to the electrons in the o framework of the molecule and so itself is an
effective Hamiltonian. A principal advantage of Hiickel theory is that it is not necessary to ever specify this
effective Hamiltonian.

The secular determinantal equation associated with the molecular orbital above is

H11 - ESu le - ES].Z _
H12 - ES].Z sz - ESzz

where the Hj are integrals involving the effective Hamiltonian. Because the carbon atoms in ethylene are
equivalent, Hi1 = Ha.

These diagonal elements of the secular determinant, called Coulomb integrals, are customarily denoted by .

The off-diagonal H’s in the secular determinant are called resonance integrals or exchange integrals and are
customarily denoted by f. Note that Sis a two-center integral because it involves the atomic orbitals from two
different carbon atoms. Although it is not necessary, one often neglects the overlap integrals in Hiickel theory
and so the §; are given by

Sij=0 ifi#j
=1 ifi=j

Thus, the Hiickel secular determinantal equation describing the ethylene molecule is

a-E pB 0
p a-E

The two roots of this secular determinant are:
E=axp

In principle, to evaluate « and f we would have to know the effective Hamiltonian operator. However, we do
not have to do this in Hiickel theory because o and fare assigned empirical values.

Because « is essentially the energy of an electron in an isolated carbon 2p, orbital, we can use it to set our zero
of energy. The quantity £ has been determined from a consideration of a variety of data and can be assigned a

value of approximately -75 kJ mol?,

There are two 7 electrons in ethylene. In the ground state, both electrons occupy the lowest energy orbital.
Because fis negative, the lowest energy is £ = o +
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An energy-level diagram showing the ground state of ethylene is shown below:

— a—§

The 7t electronic energy of ethylene is simply the sum of the energies of the two 1 electrons and is given by £ =
2a+ 2. But because «a is used to specify the zero of energy, the it electronic energy of ethylene is simply 24.

Because « is essentially the energy of an isolated p orbital, the two energies, £ = o+ £ must correspond to
bonding and antibonding orbitals.

Let us determine the wave functions for the Hiickel molecular orbitals.

Recall that the secular determinantal equation originates from the pair of linear algebraic equations for the
expansion coefficients ¢, and ¢,

(Hn_ESn)C1+(H12 _Eslz)cz =0
(le —ESIZ)01+(H22 —ESZZ)C2 =0

where ¢; and ¢; came from our trial wave function in which we approximated the orbitals as linear combinations
of t orbitals on the two atoms.

Upon using the Hiickel approximations for the H and S, we have
(a—E)c, +pc,=0
pe,+(a-E)c,=0

To find the ¢’s associated with each value of E, we substitute one value of E into either of the two linear algebraic
equations above.

For example, for the value E = o + f, either equation yields c; = ¢;, so that
=G (ﬂﬁ +Zz)
The value of c; is found by requiring that y1 be normalized. Because we are using S12 = 0, we find that ¢, = % .

Thus,

v, = i(?ﬁ + Zz)
V2
It is not difficult to show that the root £ = a — fyields

1

l//zzﬁ()ﬁ_)(z)
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

The figure below shows the two molecular orbitals schematically:

Note that it would not be difficult to extend this treatment to the case where we do not assume that the overlap
integrals, Sjj to be zero for i#j.

11.9.2 Butadiene

The case of butadiene is more interesting than that of ethylene. Although butadiene exists in cis or trans
configuration, we will picture this molecule as simply a linear sequence of four carbon atoms, each of which
contributes a 2p;, orbital to a r-electron orbital.

QOO0
5G00

Because we have a linear combination of four atomic orbitals, we are going to have a 4 x 4 secular determinant,
four different energies, and four different m-molecular orbitals.
We can introduce the notation

4
V= Zcinln
n=1

where c;, is the coefficient of the atomic orbital of the n" atom in the i molecular orbital.

The secular determinantal equation for the butadiene molecule is

H11 - Esn H12 - ESIZ H13 - ESl3 H14 - ESIA
H12 - ESlz sz - ESzz st - Est H24 - ESz4 -0
H13 - ES13 H23 - ESz3 H33 - ES33 H3A - ES3A
H14 - ESl4 H24 - ESz4 H34 - E834 H44 - ESM

Because we are taking the four carbon atoms in the butadiene molecule to be equivalent, all the H; in this
determinant are equal, and as in the case of ethylene, we denote them by «.

The Hj;, on the other hand, are two-center integrals. They involve the 2p, orbital centered on carbons i andj. In
the simplest version of Hickel theory, one sets Hj = fif the i and j carbon atoms are adjacent and H; = 0 if they
are not adjacent. The justification of this is that the overlap of the 2p, orbitals from two carbon atoms decreases
with their separation. Following this argument, one might set S; = S for adjacent carbon atoms and S; = O for
nonadjacent carbon atoms. In the simplest version of Hiickel theory, one goes even one step further and sets S
=0.

Under these approximations and assumptions, the Hiickel theory secular determinantal equation for butadiene
becomes
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11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

If we factor #from each column and let x = (@ — E)/ 3, then the determinant above becomes

0

1
=0

X

1

X = O O

1
X
1
0

o O b X

If we expand this determinant, then the secular equation is
x*=3x*+1=0
We can solve this equation for x? to obtain

2 3t\5
2

We therefore find the four roots to be

x=11.61804
x =10.61804

Recalling that x = (¢ —E)/fand that fis a negative quantity, we can construct a Hiickel theory energy-level

diagram for butadiene. There are four m electrons in butadiene. In the ground state, these four it electrons occupy
the two orbitals of lowest energy as shown below

1 x — 1618

% — 06188

4 xt 0.618f
1o+ LOISH

The total T electronic energy of butadiene is
E, =2(a+1.6188)+2(a +0.618p3)
=da+4.47243

It is interesting to compare the energy given in this equation to the energy of the localized structure in which the
two double bonds are localized between carbon atoms 1 and 2 and carbons atoms 3 and 4 in butadiene.

In the simple Hiickel theory, this localized structure is equivalent to two isolated ethylene molecules. We have
shown above that Ex = 2a. + 23 for ethylene, and so we can define a delocalization energy by

E, = E, (butadiene) — 2E_(ethylene)

= 04728
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If Bis given the value -75 kJ mol, then we see that the delocalization energy in butadiene is about -35 kJ mol™.
This is the energy by which butadiene is stabilized relative to two isolated double bonds, or in other words, the
stability that butadiene derives because its 1t electrons are delocalized over the entire length of the molecule
instead of being localized to the two end bonds.

Associated with each of the four molecular orbital energies of butadiene is a wave function given by the

expansion coefficients.

Recall that the molecular orbital wave functions are given by

4
Vi = zcinln
n=1

where the c;, are determined by the set of linear algebraic equations that lead to the secular determinantal
equation. The algebra is a little bit longer than in the case of ethylene although straightforward. The resulting
wave functions are

w, =0.3717 y, +0.6015y, + 0.6015 %, + 0.3717 »,

v, =0.60154, +0.3717 y, —0.3717 , - 0.6015,

v, =0.6015y, —0.3717 y, —0.3717 4, + 0.6015y,

v, =0.3717 4, - 0.6015 , +0.6015 7, —0.3717 y,

These wave functions are presented schematically below:

Notice that the energy increases as the number of nodes increases.

Because we have set Sj = ¢, we have in effect assumed that the x, are orthonormal. Using this fact, one can see
that

4
dci=1

n=1

This allows us to interpret c;,? as the fractional i electronic charge on the nt carbon atom due to an electron in
the i molecular orbital. Thus, the total i electronic charge on the n carbon atom is

q, = Z nc

214



11 QUANTUM MECHANICAL TREATMENT OF SIMPLE MOLECULES

Where n;is the number of zelectrons in the i molecular orbital. For butadiene, you will find that all the ¢’s are
1, indicating that the p electrons are uniformly distributed over the molecule. You can see this schematically by
putting 2 electrons in each of the first two molecular orbitals and adding the electron probabilities.

One can also use Hickel theory to define the 7bond order. We can interpret the product c;cisas the 7 electron
charge in the it molecular orbital between the adjacent carbon atoms r and s. The zbond order can be defined

as:
FJr’sr = Z nicirc:is
i

Where n; is the number of zelectrons in the it molecular orbital.

For butadiene, one gets
Pllzr = 2C11C12 + 2C21C22 + OC31C32 + 0C4lc42
= 2(0.3717)(0.6015) + 2(0.6015)(0.3717)

=0.8942

Py =2C,C;3 +2C,,Cp
=2(0.6015)(0.6015)+2(0.3717)(-0.3717)
=0.4473

You can see by symmetry that

Ps =P

Remember that this is the zbond order. To find the total bond order, we must remember that there is a obond
between each carbon atom. So we can write:

P, =1+P;

For butadiene, this leads to
R,=P, =1.894
P, =1.447

These values are in good agreement with the relative reactivity of these bonds.
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