10 Atomic Term Symbols and Coupling of Angular Momentum

In many electron atoms, each electron has both a spin and an orbital angular momentum. In the zeroth-order
picture where we neglect inter-electronic repulsion, the energy of an electron in an atom (i.e., the energy of a
particular orbital) depends only on the n quantum number of that electron or orbital. In this approximation, a
particular electronic configuration (in which we specify only n and / for each electron) has a specific, well-defined
energy.

However, when we specify the electronic configuration of an atom, there are many different values of the
projections of both the spin and orbital angular momenta (m/ and ms) for a given n and /. (Remember, for

hydrogen, the energy is independent of m.)
Let’s consider the example of the ground state of carbon, which has an electronic configuration of
1522522p?

The two 2p electrons can be in any of the three 2p orbitals (2p.1, 2po, 2p+1) and have different M_and can have

either spin up or spin down (different Mg ).

same m, different m, different m,
different m, same #1, different m,
m= - 0 1 -1 0 1 -1 0 1

When we take into consideration inter-electronic repulsion, the energy of the atoms depends upon these
quantum numbers as well i.e., the inter-electronic repulsion lifts the degeneracy.

We therefore need a way to label the states of an atom in a more precise way in order to account for these
differences. We need to label a state not only by its configuration, but also in a manner that indicates the
projections of the angular momenta of the individual electrons, because each state labeled in this way will have
a different net angular momentum and a different energy.

There is no analytical way to differentiate these states, since the electronic Schrodinger equation is not exactly
solvable. However, having some qualitative principles will allow us to predict which states will be higher in energy
than others. This is done using atomic term symbols.

The approach that we will consider is called Russell-Sanders coupling or L-S coupling and is simply a method by
which one determines the resultant angular momenta from many electrons.

The Russell-Saunders scheme determines the total orbital angular momentum, L, and the total spin angular
momentum, S, of all the electrons, and then adds these two vectors to get a total electronic angular momentum,

J.

The result of coupling these angular momenta in this way (i.e., the resulting state) is designated by an atomic
term symbol.

The term symbol has the form: 25+1Lj

where : L is the total orbital angular momentum quantum number
Sis the total spin quantum number
Jis the total angular momentum quantum number
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10 Atomic TERM SYMBOLS AND COUPLING OF ANGULAR MOMENTUM

We will see that the total orbital angular momentum quantum number L will be an integer > 0.

In a manner analogous to the way we indicate the orbital angular momenta of individual electrons by letters
(s,p,d,f...), we indicate the total L by letters

L= 0 1 2 3 4
S P D F G

The total S will turn out to be integral or half-integral, so the left superscript 25+1 will be an integer.
The quantity 25 +1 is called the multiplicity, since if L>S, there are 25 +1 possible values of J.
Examples of atomic term symbols (otherwise just called terms) are
35 D p
These symbols represent states of an atom with the same electronic configuration but with different energy.
These are read as "triplet S", "doublet D", and "singlet P".

At this point it may seem a bit mysterious why we chose to add the angular momenta in this way (that is, why
we chose first to find the total L and total S and then combine them to find total J).

Let me digress a moment to talk about good quantum numbers and constants of motion. We know that the

square of the magnitude of the total angular momentum operator, J 2, commutes with the Hamiltonian (if the
potential only depends on the distance not the angles), it is a constant of the motion. This is true no matter how

we couple angular momenta. (For a quantity to be constant in time it must commute with H so its
eigenfunctions have trivial time dependence.)

If we neglect inter-electronic repulsion, the angular momentum operator of each electron commutes with the
Hamiltonian and hence is a conserved quantity or a constant of motion. This means that the angular momentum

guantum numbers of each electron have meaning since they are time independent.

However, if you include inter-electronic repulsion in a multi-electron system, the orbital angular momentum
operators of the individual electrons no longer commute with H . Therefore the quantum numbers li for the

individual electrons are no longer good quantum numbers and the angular momenta of the individual electrons
need not be conserved (i.e. they are no longer constants of the motion).

However, it turns out that for atoms of atomic number less than about 40, the sum of the orbital angular
momentum

|_=Z|i

will still be a constant of the motion. This says that the individual orbital angular momentum vectors can change
in time, but their vector sum remains constant.

The same holds true for spin angular momentum. The total spin angular momentum
S=>"s
i

will also be a constant of the motion.
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10 Atomic TERM SYMBOLS AND COUPLING OF ANGULAR MOMENTUM

Why does the coupling scheme outlined above work for atoms with Z < 40? The coupling scheme | have presented
in which we first couple the orbital angular momentum and the spin together and then couple these to get the
total angular momentum only holds in the case in which we neglect relativistic terms in the Hamiltonian. That is,
L and S are only good quantum numbers when we neglect the relativistic spin-orbit coupling term.

The spin-orbit term in the Hamiltonian has the form
Hso :Zé:(rj)li °S;
i

and it enters if we do a relativistic treatment of quantum mechanics. It basically arises from the fact that a moving
electron creates a magnetic field which has a magnitude that is proportional to the orbital angular momentum,
I; of the electron. This magnetic field interacts with the spin magnetic moment of the electron which is
proportional to the spin, s;

One can easily show that L2 and S? (where these are the operators for the total angular momentum) do not
commute with this term in the Hamiltonian.

In the Russell-Sanders or L-S coupling scheme outlined above we are neglecting the Hg, term and assume
[CH]=0 [$2,H]=0
This assumption (and hence the coupling scheme) is best when the atomic number is low (<40).

The average velocity of the electron depends on Z. Higher atomic number means faster (v) and hence, it's more
likely that relativistic terms will become important. So in this approximation (which is quite good for low Z), we
can characterize an atomic state with a total orbital angular momentum quantum number, L, where /(/ + 1)h?%is
the square of the magnitude of L.

Because L and S are constants of the motion, it is meaningful to label states by them.

To get the quantum numbers corresponding to the total orbital or total spin angular momentum, we cannot
simply add the individual quantum numbers. The angular momenta are vector quantities, and we have to add
them vectorially. However, the projections of the angular momentum vectors on the z-axis add like scalar
quantities, and from this we can find the quantum numbers for the total angular momentum.
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Thus,

LZZZ|Zi:szih:MLh where ML:zmi
and

S,=Ys,=Ymsi=Mp  where M, = >m,
Note: | will use M, for M to emphasize that it is orbital angular momentum.

The goal is to couple a set of angular momentum vectors by adding the z-components to get a total z-component
(i.e. M, and Ms), and then determine what the corresponding total angular momentum quantum numbers are (L
and S). From these we can determine the Term Symbol. Each term symbol will represent a state of different
energy.

We need to be able to derive the Terms for a given electronic configuration.

1) First consider closed subshells (full number of electrons)

The total spin will always equal zero for a closed shell. (note that shells are defined by n, subshells by /)

For each electron with ms = 1/2 there is another with ms =-1/2

So
M, = z m; =0 for a filled subshell and S=0

Similarly, the total orbital angular momentum L will = 0 for a closed subshell

For every electron in an orbital with quantum number m, there will be one with quantum number -m, since m
runs from / to -1.

M, =>m,;=0 for a filled subshell.

So for a totally closed subshell
L=0 S=0 andwehaveonlya 1S,
If we have a configuration with a closed subshell and an open one, we need only consider the open subshells.
(The closed ones don't contribute to L and S).
2) Consider two electrons in different subshells

One doesn't have to worry about the Pauli principle since they will have different values of n or / or both.
(Remember, no two electrons can have all the same quantum numbers.)

Ignore closed subshells.

Write down all the possible combinations of quantum numbers of the open shell electrons. By summing the m
and m; to get M, and Ms you can then find the possible values of S and L and the terms.

3) When we have two electrons in the same subshell (same as n and /), we have some restrictions.

For instance for a 1s? 2s% 2p? carbon ground state, one can make a list of possible values of the m quantum
numbers, see below. Certain values are not valid, however, because of the Pauli Exclusion Principle.
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For instance, one can't have

m=1 msa=1/2 m=1 my=1/2
Or you can't have both

m=1 ma=1/2 m=1 ma=-1/2

and
m=1 msa=-1/2 m=1 my=1/2

If you allowed both of these, it implies that you can distinguish between electrons. By summing the m and ms to
get M, and Ms you can then find the possible values of S and L and the terms.

There is one last part to these term symbols: the subscript J which is the total electronic angular momentum. The
total angular momentum J is the vector sum J =L +S. We know this commutes with H so J will be a good quantum
number
J can take the values

J=L+S,L+51, ... |L-S|
You can see this by coupling just two angular momentum vectors.
Jis written as a subscript in the term symbol.

For 3p L=1,5=1 Jcanrange fromJ=2,1,0

so we get 3py 3Py 3P, These are called levels.

In the absence of spin-oribit interaction, different levels have the same energy, but Hy, splits them slightly.

Once we have determined the states which correspond to a particular electronic configuration, how do we decide
which is lowest in energy?

Hund's Rules
1) The highest in multiplicity is lowest (least inter-electronic repulsion)

2) If there are two states with the same multiplicity, the one with the largest L is the lowest.

3) If the subshell < half filled the state with the lowest J is lowest in energy, if the subshell > half
filled state with highest J is lowest in energy.

This works well for ground state configuration, but not always as well for excited configurations.

Friedrich Hund
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Example:
Let us have a look at an example, the carbon atom. The 6 electrons of the carbon atom give rise to the following

electronic configuration 1s%2s22p%. We have just seen that the filled subshells do not contribute to the total
orbital and spin angular momentum, since they have L=5=0. So we only have to consider the two electrons in the
2p shell. If we take into account the Pauli Exclusion Principle we can write down the following table for the
different values of m and ms to give M, and Ms.

mi Mmsi1 mj ms; M Ms M/
1 +1 +% +1 - +2 0 +2
2 +1 +% 0 +% +1 +1 +2
3 +1 +% 0 -% +1 0 +1
4 +1 +% -1 +% 0 +1 +1
5 +1 +% -1 -V 0 0 0
6 +1 Y 0 +% +1 0 +1
7 +1 -¥% 0 <Y +1 -1 0
8 +1 <Y -1 +% 0 0 0
9 +1 - -1 -Y 0 -1 -1
10 0 +% 0 -V 0 0 0
11 0 +% -1 +% -1 +1 0
12 0 +% -1 <Y -1 0 -1
13 0 Y -1 +% -1 0 -1
14 0 <Y -1 - -1 -1 -2
15 -1 +% -1 % -2 0 -2

We must now deduce the possible values of L and S from the values of M and M in the table above. The largest
value is 2 and this value occurs only with Msis 0. Therefore there must be a state with L=2 and S=0. This state
accounts for the entries 1, 3, 5, 12 and 15 in the table. Remember, an L=2 state with S=0 has M values of -2, -1,

0, +1 and +2 and Ms=0.

If we take these entries out of the table we are left with:

mi Mmsi1 mj ms; M Ms M/
2 +1 +% 0 +%5 +1 +1 +2
4 +1 +% -1 +% 0 +1 +1
6 +1 <Y 0 +% +1 0 +1
7 +1 ) 0 % +1 -1 0
8 +1 <Y -1 +% 0 0 0
9 +1 <Y -1 - 0 -1 -1
10 0 +% 0 -% 0 0 0
11 0 +% -1 +% -1 +1 0
13 0 ) -1 +% -1 0 -1
14 0 =Y -1 % -1 -1 -2

The largest value of M remaining is M=1, implying L=1. This L=1 state has as possible M values, M=0, +1. Each of
these values occurs with a value of Ms=0 or £1. So what we have is a state with L=1 and S=1. If we remove the
nine entries in the table corresponding to this state we are only left with entry 10 with M=0 and Ms=0 implying
L=0 and $=0.

Al that has to be done now is to assign term values to these states.

[=2,5=0 = J=2 = D,
=1, 5=1 = J=0,1,2 = 3Py, 3Py, 3P,
=0, $=0 = J=0 = 1S
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The ordering of the different states according to Hund'’s rule are given in the figure below.

ISO

1s

1s22s22p2
H° HO+H,, HO+H,,+He H°+H,, +Hy+H

To close out and summarize our discussion of atoms, let us step back for a moment and look at the effect of the
different terms in the Hamiltonian.

1) To zeroth-order there is only one state for a particular electron configuration.

2) If we consider electron repulsion, it splits the different terms. This says that states with different
amounts of orbital and spin angular momentum will have different amounts of electron repulsion.

3) If we add spin orbit interaction, we split different J values.

4) If we add Zeeman term (i.e., due to an external magnetic field), split mj's.
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