Electrochimie des solutions série 6

Exercice n°1

On veut titrer 50 mL d'une solution FeSO₄ de concentration inconnue à 0,05 M de H₂SO₄ par une solution de (NH₄)₂Ce(NO₃)₆ dont la concentration est de 0,1 M. Le tirant est dénommé oxydant de concentration C₀ et le titré est dénommé réducteur de concentration inconnue C_R, la température du laboratoire est de 25°C.

Il est possible qu'une partie des ions Fe²⁺ de la solution aqueuse se soient oxydés en ions Fe³⁺ au contact de l'air ambiant. Pour déterminer alors la quantité totale de Fe²⁺, il faut réduire totalement les ions Fe³⁺ en Fe²⁺ à l'aide d'une colonne de Jones remplie de poudre d'amalgame Zn/Hg à 2% (m/m) de Hg au travers de laquelle on fait couler les 50 mL solution de FeSO₄. La colonne de Jones est rincée avec H₂SO₄ 0,05 M et le volume de solution à doser est portée à 100 mL à l'aide de H₂SO₄ 0,05 M. Le dosage potentiométrique est réalisé sous agitation et sous bullage constant de Ar pour chasser l'oxygène de la solution à doser.

- a) En vous basant sur le digramme de Pourbaix du Fer établit à la série 3 et en calculant le pH de la solution à doser, expliquer pourquoi il est préférable de travailler dans ces conditions de pH.
- b) Ecrire les deux demi-équations redox ainsi que l'équation bilan. Est-ce correct d'avoir désigné le tirant comme oxydant et le titré comme réducteur ?

$$E^{0}_{\left(Fe^{3+}/Fe^{2+}\right)} = 0,770~V~~(vs~ESH)~~et~E^{0}_{\left(Ce^{4+}/Ce^{3+}\right)} = 1,720~V~~(vs~ESH)$$

- c) Calculer la constante d'équilibre de la réaction redox à 25°C. Le titrant est-il adéquate ?
- d) Combien d'électrodes sont nécessaires pour réaliser la mesure ? Préciser le rôle et la nature de chacune d'elle.

- e) En vous basant sur l'équation bilan et en établissant un tableau d'avancement de réaction basé sur le nombre de mole d'oxydant no et (no)équivalence et sur le nombre de mole de réducteur n_R , déterminer la composition de la solution à doser à t=0, 0 < t < t = téquivalence, t=téquivalence et téquivalence t=téquivalence t=téquiv
- g) Établir la relation entre le potentiel E_{eq} pour les domaines $0 < t < t = t_{\text{équivalence}}$ et $t < t_{\text{final}}$. Exprimer ces potentiels en fonction de C_{O} , $(C_{O})_{\text{équivalence}}$ et C_{R} .
- h) Etablir la valeur de E_{eq} à la demi-équivalence et à la double équivalence. En déduire la valeur de E_{eq} à l'équivalence.
- i) Sachant que V_{équivalence} = 30 mL, déterminer la concentration en Fe²⁺, de la solution dosée.

Exercice n°2

Lorsque l'on veut titrer un oxydant en solution aqueuse, il est difficile d'utiliser un réducteur car ce dernier ne sera pas sélectif, il s'attaquera aussi à l'eau (réduction de H ⁺(aq)). Dans ce cas, on ajoutera à la solution, un réactif de déplacement de l'équilibre de Nernst.

Pour doser Ni ²⁺(aq) dans l'eau d'une rivière, on utilisera une électrode de mesure constituée par un fil de nickel et une électrode de référence de type Ag/AgCl. On ajoutera un électrolyte support inerte comme KCl à la solution à doser. La concentration en électrolyte support sera ajustée à 0,1 M. Le dosage sera réalisé à 25°C.

Dans notre cas, on utilisera le complexant suivant :

- a) Sachant que ce complexe est insoluble et que la réaction de complexation est totale ($K_f > 10^{10}$), écrire le potentiel d'équilibre à l'électrode de nickel en fonction de la concentration de complexant ajouté à la solution ($E^0_{\left(Ni^{2^+}/Ni\right)} = -0,250~V~(vs~ESH)$).
- b) tracer une esquisse de la courbe de titrage en fonction du volume de complexant ajouté.