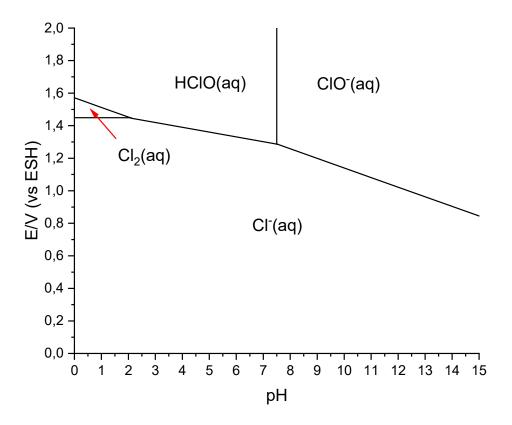
Electrochimie des solutions série 3

Exercice n°1

Soit le diagramme de Pourbaix du chlore. Les espèces listées dans le tableau suivant sont à 10⁻² M et les solutions sont considérées comme diluées.


Espèce considérée	Cl ⁻ (aq)	Cl ₂ (aq)	ClO ⁻ (aq)	HClO(aq)
n.o.	C1 = -1	C1 = 0	C1 = +1	C1 = +1

Le pKa du couple HClO(aq) / ClO-(aq) vaut 7,5.

Les équations à considérer sont les suivantes :

$$\begin{split} HClO\big(aq\big) & \rightleftharpoons ClO^{-}(aq) + H^{+}(aq) \quad \Rightarrow pK_{a} = 7.5 \\ & E_{eq\big(Cl_{2}/Cl^{-}\big)} = 1,449 \ V \\ & E_{eq\big(HClO/Cl_{2}\big)} = 1,571 - 0,059 \, pH \\ \\ & E_{eq\big(HClO/Cl^{-}\big)} = E_{HClO/Cl^{-}}^{0} + 0,0295 \, log\left(\frac{\big[HClO(aq)\big]}{\big[Cl^{-}(aq)\big]}\right) - 0,0295 \, pH \\ \\ & E_{eq\big(ClO^{-}/Cl^{-}\big)} = 1,73 - 0,059 \, pH \end{split}$$

A l'aide de ces équations et du diagramme de Pourbaix suivant, déterminer la valeur du potentiel standard du couple HClO / Cl⁻.

Exercice n°2

Tracer le digramme de Pourbaix de H_2O_2 . H_2O_2 est un liquide miscible à l'eau en toute proportion et est considéré comme un soluté. Les espèces à considérer sont : H_2O_2 (aq), HO_2 (aq), $O_2(g)$ et $H_2O(1)$. Les solutés seront considérés à 10^{-2} M et les gaz à P=1 Bar. Les données sont les suivantes : $E^0_{H_2O_2/H_2O}=1,763\ V\ (vs\ ESH)\ ;$ $E^0_{O_2/H_2O}=1,229\ V\ (vs\ ESH)\ ;$ $E^0_{O_2/H_2O}=0,690\ V\ (vs\ ESH)\ ;$ $E^0_{H_2O_2/H_2O}=?\ ;$ $E^0_{O_2/H_2O}=?\ ;$ $E^0_{O_2/H_2O}=1,6$

H₂O₂ est-il stable?

Exercice n°3

Tracer le digramme de Pourbaix de Fe. Les espèces à considérer sont : Fe(s), Fe²⁺(aq), Fe³⁺(aq), Fe(OH)₂(s), Fe(OH)₃(s). Les solutés seront considérés à 10^{-2} M. Les données sont les suivantes : $E^0_{Fe^{3+}/Fe^{2+}} = 0.770 \ V \ (vs \ ESH) \ ; \qquad E^0_{Fe^{2+}/Fe} = -0.440 \ V \ (vs \ ESH) \ ; \qquad pK_s \left(Fe(OH)_2\right) = 15.1 \ ;$ $pK_s \left(Fe(OH)_3\right) = 38.0$

En superposant au diagramme de Pourbaix du fer celui de l'eau, répondre aux questions suivantes.

Le fer est-il stable dans l'eau?

Quelles sont les composés du fer observable à pH acide et à pH basique ?