Electrochimie des solutions série 2

Exercice n°1

On considère que l'équilibre électrochimique est atteint lorsque : $\Delta_r \widetilde{G} = 0$. Soit l'équation générique suivante :

$$v_0 O + ne^- \rightleftharpoons v_R R$$

En se basant sur le fait qu'au cours de la réaction décrite ci-dessus, la charge se conserve, prouver que :

$$\left(\Delta\Phi_{E}\right)_{eq} = \Delta\Phi^{0} - \frac{RT}{nF} \ln Q_{(T)}$$

Dans cette équation, Q_(T) représente le quotient réactionnel à la température considérée.

En utilisant le potentiel d'électrode absolu, démontrer la loi de Nernst :

$$E_{eq} = E^0 - \frac{RT}{nF} \ln Q_{(T)}$$

Exercice n°2

a) Etude du couple O₂/H₂O sur une électrode de platine.

Ecrire le potentiel d'équilibre E_{eq} du couple O₂/H₂O pour une pression de O₂ de 1 bar sur l'électrode étudiée.

A quel pH est donné le potentiel standard du couple O₂/H₂O?

Quelle est la variation du potentiel d'équilibre E_{eq} lorsque le pH de la solution croît ?

b) Soit une électrode de fer plongée dans une solution contenant des anions CN⁻.

Ecrire le potentiel d'équilibre E_{eq} du couple Fe^{2+}/Fe lorsque Fe^{2+} réagit en solution avec 6 anions CN^- . La constante d'équilibre associée à la réaction chimique sera notée K_f .

Est-ce que le potentiel d'équilibre dépend du pH de la solution d'anions cyanures ?

Sachant que le p K_a de HCN est de 9,21 et que $K_f = 10^{35}$, donner la valeur du potentiel standard apparent en fonction du pH de la solution aqueuse.

A quel pH doit-on réaliser l'oxydation du fer en présence de CN⁻?

c) Etude du couple ClO₄ -/Cl₂ sur une électrode de platine.

Ecrire le potentiel d'équilibre E_{eq} du couple ClO₄ -/Cl₂ sur l'électrode étudiée.

Le pH de la solution a-t-il une influence sur ce potentiel d'équilibre ?

Exercice n°3

En considérant le coefficient de diffusion de K⁺ qui vaut 1,96 ×10⁻⁹ m²·s⁻¹ et celui Cl⁻ qui est de 2,03 ×10⁻⁹ m²·s⁻¹, calculer le potentiel de jonction liquide entre une électrode de référence Ag(s)|AgCl(s)|KCl(aq, 3M) et une solution électrochimique dont l'électrolyte support est KCl à 0,1 M.

Pensez-vous que ce potentiel est négligeable?