1.7. Reaction of diazonium salts

Sandmeyer reaction

General mechanism:

Exception: no copper needed with iodide, iodide act as a redox catalyst itself

1.7. Reaction of diazonium salts

• Meerwein reduction: removal of the diazonium group

 Reduction of a diazonium salt maintaining the N-N single bond: preparation of aromatic hydrazines

1.7. Reactions proceeding by arenium cations

Only possible with the very best leaving group: N₂

Generation of arene cations: "Phenol cooking"

$$N_2X$$
 H_2SO_4
 $H_2O, \Delta T$
 $-N_2$
 $-X$
arenium cation orthogonal to π -system unstabilized and very reactive

Balz-Schiemann reaction: introduction of a fluorine substituent

$$\begin{array}{c|c}
 & \text{NH}_2 & \text{NaNO}_2 \\
\hline
 & \text{HBF}_4
\end{array}$$

$$\begin{array}{c}
 & \text{OPSIGN STATE } \\
\hline
 & \text{NaNO}_2
\end{array}$$

$$\begin{array}{c}
 & \text{OPSIGN STATE } \\
\hline
 & \text{OPSIGN STATE } \\
\hline
 & \text{Isolated salt}
\end{array}$$
isolated salt

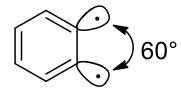
1.8. Substitution by the aryne mechanism

Experimental observations:

Explanation by a new mechanism:

 NH_2

 \bullet $\sigma\text{-}$ acceptor stabilizes the negative charge


OMe

• Attack on meta position due to less steric hindrance 4

1.8. Substitution by the aryne mechanism

General properties of the arynes

- Are not real/normal triple bond with two sp-hybridized carbon atoms
- Only a partial orbital overlap possible, remain mostly sp²-hybridized
- Arynes are reactive singulett species

- Bond lengths in comparison to benzene

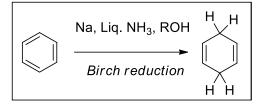
1.8. Substitution by the aryne mechanism

Other reactions of arynes:

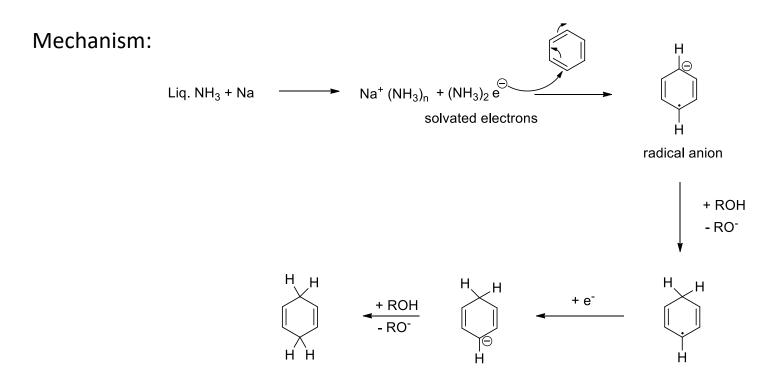
Trimerization in higher concentration and absence of reaction partner

Additional methods for their preparation:

$$\begin{array}{c|c} & & & \\ &$$

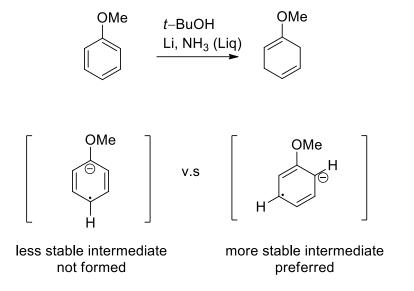

Modern method:

good soluble source of F⁻

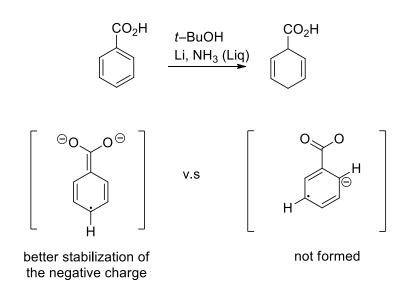

$$SiMe_3 \qquad Bu_4N^+F^- \qquad + \qquad Si-F \qquad + \qquad Bu_4N^+ - OT1$$

Tf= Triflat, Trifluoromethane sulfonyl ⁻O₃SCF₃

Birch reduction: reduction of the aromatic ring to give 1,4-cyclohexadienes



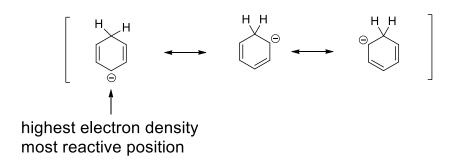
Solvent: liquid ammonia Reaction below -31°C



Regioselectivity of the reduction:

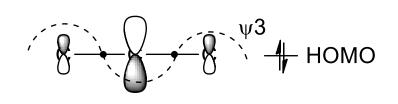
<u>Case 1</u>: Electron-donating substituents

Case 2: Electron-withdrawing substituents


Example for a Birch alkylation:

interception of the carbanion by an electrophile, e.g. alkylhalide instead of proton

$$\begin{array}{c|c} O & O^t B u \\ \hline & ROH \\ \hline & H \end{array}$$


The Birch reduction yields selectively 1,4-Cyclohexadienes. Why are 1,3-Cyclohexadienes not formed?

Explanation by the electron densities of the pentadienyl anion

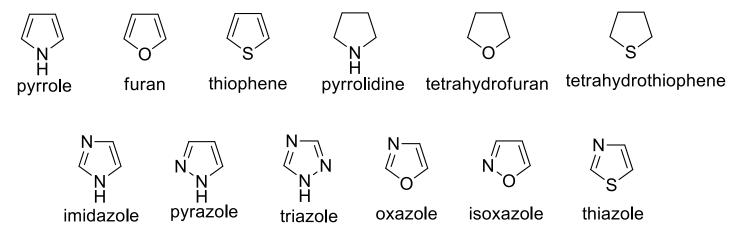
Relevant HOMO: the electron density is highest at central carbon atom C3

MO scheme:

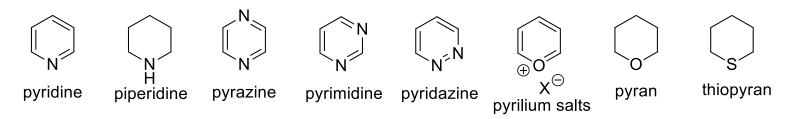
1.10. Construction of the aromatic ring: metal-catalyzed [2+2+2]-cyclization

Several different metal complexes of Ni⁰, Rh¹, Ir¹, Ru, Co, Pd are known for this reactivity.

Simplified mechanism:

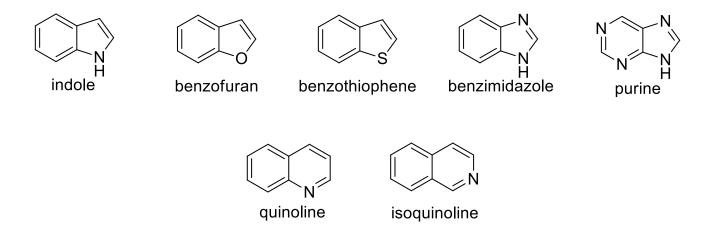

$$[M] \longrightarrow [M] \longrightarrow [M] --[M]$$

Well suited and excellent for intramolecular reactions


Problems of regioselectivity and chemoselectivity with different substituted alkynes

2.1.1. Nomenclature: trivial names

- Most important heterocycles:
- 5-membered ring series:



– 6-membered ring series:

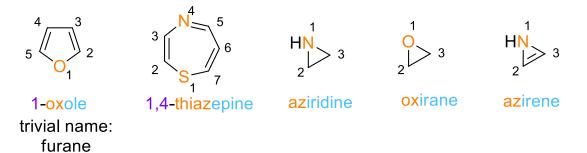
2.1.1. Nomenclature: trivial names

- Most important heterocycles:
- Condensed series:

2.1.2. Nomenclature: The Hantsch-Widman system

- the essentials:
- Name is composed by number + prefixe(s) + suffix
- Numbering rules:
 - 1) heteroatom is always number 1
 - 2) If multiple heteroatoms priority: O > S > N
 - 3) The smallest numbering combination for the heteroatoms is then correct
- Prefix originates from the heteroatom: N = az(a)

$$O = ox(a)$$


$$S = thi(a)$$

2.1.2. Nomenclature: The Hantsch-Widman system

Suffix determines the ring size:

Ring size	Unsaturated ring	Saturated ring	N-Saturated ring
3	irene	irane	iridine
4	ete	etane	etidine
5	ole	olane	olidine
6	ine	inane	
7	epine	epane	
8	ocine	ocane	
9	onine	onane	

– Examples:

