π -acceptors: all positions are deactivated as electron density of the ring is decreased

$$PO_2$$
 PO_2
 PO_2

Mesomeric structures of all possible isomers of the $\bar{\sigma}$ -complex:

not a good mesomeric structure

para
$$\begin{bmatrix} NO_2 & & & & \\ & & & & \\ & & & & \\ E & H & & H & E & H & E \end{bmatrix}$$

charge repulsion
not a good mesomeric structure

-M: slows the reaction down and directs meta

- What happen in a formally contradicting case?
 (substituent with –I and +M or with +I and –M)
- Generally the M-effect dominates I-effect
- Quantitative assessment with the Hammet equation
- Special case: halogens -Cl and -Br which have a -I and +M effect
- The reaction rate decrase: -I shows its influence
- ortho and para directing: +M shows its influence

Selectivity vs reactivity:

For the same substrate combinations, the reaction outcome is influenced by the choice of the reagents:

Very general principle:

the higher the reactivity of a reagent, the lower its selectivity is.

→ need to adapt it accordingly to the substrate

- Ratio of ortho and para products:
- 1) Ortho is favored by statistics by a factor of 2
- 2) The para position is often preferred for sterical reasons

3) Coordination and directing groups can lead to a selective ortho substitution

1.2.4. Introducing a 3rd substituent

• Two substituents enhance their effects if directing in the same sense:

No substitution in bis-ortho position

 Case with EDG and EWG substituents: stronger subtituent wins and decides on the position

M-effects dominate I-effects

Most often activating effects are stronger than deactivating effects (-M)

1.3. Quantitative Substitution Effects

• The Hammett equation: quantitative measurement of substitution effect

$$\log \frac{K_X}{K_H} = \rho \sigma$$

 K_H : reaction rate for the unsubstituted aromatic compound K_X reaction rate for X substituted aromatic compound σ : substitution parameter (changes with X) ρ : reaction parameter (changes with the reaction)

$-\sigma$ -values:

Characteristic for the individual substituent

X = H:
$$\sigma$$
 = 0
X = EDG: σ < 0
X = EWG: σ > 0

Its position is important (different values for a substituent in the o-, m- or p-position)

$-\rho$ -values:

 ρ >0: a negative charge is developing in the transition state

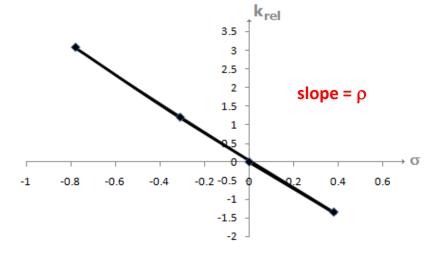
 ρ =0: rare case where the reaction rate is not influenced by substitution

 ρ <0: a positive charge is developing in the transition state

-Standardized reaction:

:
$$\rho = 1$$
 $\rho = 1$ ρ

6


1.3. Quantitative Substitution Effects

- Valuable information that can be obtained from the Hammett equation:
- 1) A known reaction (ρ known) can be used to determine the donor or acceptor properties of an unknown substituent X: measure its σ value.
- 2) Investigate the mechanism of an unknown reaction (ρ unknown): with several known substituents (σ given) measure the ρ value of the reaction and draw conclusion on the charge in the transition state.

1.3. Quantitative Substitution Effects

• Example for the Hammett equation: solvolysis reaction

Х	Н	p-Cl	p-Me	p-OMe
σ	0	0.38	-0.31	-0.78
K _{rel}	1	0.045	16.2	1200
Log(K _{rel})	0	-1.35	1.2	3.08

By definition the line goes via origin

Equation give the ρ -value (the slope): y = -3.828x

- → a positive charge is developing in the transition state
- \rightarrow S_N1 reaction

1.4. Reversibility in S_FAr reactions

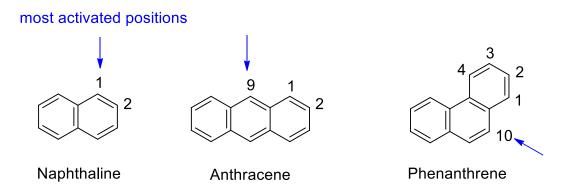
α-Naphthylsulfonic acid kinetic product has a lower transition state and is formed faster

β-Napthylsulfonic acid Thermodynamic product, more stable

Example:

Kinetic:

H_2SO_4 $0^{\circ}C$ + SO_3H SO_3H SO_3H SO_3H SO_3H


Thermodynamic:

Application: a trick for a removable directing group

$$E^{+} \qquad E^{+} \qquad E^{+$$

Blocks para-position

1.5.1. Reactivity of condensed aromatic substrates

Naphthaline: reactivities differences between position 1 and 2 in S_EAr

1.6. Nucleophilic Aromatic Substitution S_NAr

Meisenheimer complex

Criteria:

- X must be a leaving group with high electronegativity (F, Cl, OR...)
- EWG group (-NO₂, -CN, ...)
- → The reaction proceeds by an addition/elimination mechanism.
- → Obeys second order kinetics
- → EWG substituents must stabilize the negative charge of the Meisenheimer intermediate.
- → Therefore they must be in the ortho- or para- position.

1.6. Nucleophilic Aromatic Substitution S_NAr

Prominent example of S_NAr

Historical very important application with Sanger's reagent using S_NAr for amino acid sequence analysis

1.6. Nucleophilic Aromatic Substitution S_NAr

Comparaison between S_EAr and S_NAr : basic key facts

	S _E Ar	S _N Ar	
Agent	E ⁺	Nu ⁻	
Key Intermediate	Cationic, Wheland complex	Anionic, Meisenheimer Complex	
Substituent that accelerate the reaction	+M/+I groups	strong -M groups	
Leaving group	-H (-SiR ₃ ; -CR ₃)	-F, -Cl, -OR	