
Fonction et réaction organiques II Week 3

1.2.2.7. Formylation

not stable

Introduction of a formyl group

The obtained products are aromatic aldehydes.

Not possible by using the Friedel-Crafts acylations, formyl chloride is not stable and decomposes to HCl and CO

Used with limitations in the Gattermann-Koch-Process

The method is not convenient on a laboratory scale. The process requires high pressures of the gases to shift the equilibrium towards the formyl chloride.

1.2.2.7. Formylation

• Vilsmeier-Haack formylation: (requires an electron rich aromatic substrate)

Mechanism:

3

1.2.2.8. Carboxylation

Kolbe-Schmitt reaction:

Carbon dioxide CO₂ is a weak electrophile

 \Longrightarrow

Only react with very activated aromatic susbtrates

Most important example: synthesis of aspirin

1.2.2.9. Hydroxy methylation

Only with activated aromatic substrates

• Reaction under basic conditions:

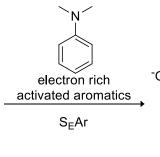
Reaction under acidic condition: less reactive aromatic substrates can be used

Reaction used in manufacture of Bakelite, one of the first synthetic plastic polymers in 1907-1909

1.2.2.10. Chloromethylation

Benzylhalides are important synthetic intermediates and as well relevant for solid phase chemistry

Application: preparation of Merrifield resins


1.2.2.11 Diazo-coupling

Diazo coupling requires activated aromatic substrates!

Preparation of the diazonium electrophile:

$$\begin{array}{c} \text{HCI + NaNO}_2 \\ \downarrow \\ \text{NH}_2 \\ \hline \\ \text{-H}_2\text{O} \end{array} \qquad \begin{array}{c} \text{N}^{\text{E}}\text{N}^{\text{:}} \\ \oplus \text{CI} \\ \end{array}$$

Illustrative example:

- •Elect
- •Only trans isomers are formed
 - •Electron delocalized over the complete π -systeme

Methyl orange pH indicator, yellow to orange scheme

7

Y=EDG, π -donor, +M-effect \Longrightarrow strongly activating ortho-/para- directing; reactivity increases up to 10²⁰ times compared to Y=H

inportant substituents strongly activating
$$O^{\bigcirc}$$
 NR_2 NH_2 OH OMe $NHAc$ NH_2 N

Y= σ -donor, +I-effect \Longrightarrow slightly activating, ortho-/para- directing; reactivity increases up to 20 times faster compared to Y=H

$$R_1$$
 R_2 R_3 R_1 S_1 R_3 alkyl groups silyl groups

X=EWG, π -acceptor, -M-effect \Longrightarrow strongly deactivating; meta-directing; up to 10⁻⁷ decreased reactivity compared to Y=H

$$NO_2$$
 CO_2R COR CHO CN SO_3H SO_2R

8

X=σ-acceptor, deactivating, *m*-directing

Reactivity can be modulated by pH:

Halogens are a special case: -I and +M effect

Slightly deactivating substituent (~ 30 times compared to Y=H) **But** ortho- / para- directing group

24%

72%

Illustrative examples between EDG and EWG directing groups

4%

 π -donors: all positions are activated as electron density of the ring is increased

Mesomeric structures of the possible isomers of the σ -complex:

+M: accelerate the reaction and direct ortho and para