
Fonction et réaction organiques II, week 2

1.2. Electrophilic aromatic substitution S_EAr

General reaction:

- $E_1 = H$
- Rare cases where $E_1 = SiR_3$, tBu, SO_3H is then called ipso-substitution
- Formally, the reaction is the substitution of H⁺ by an electrophile E⁺
- Mechanistically, it is an addition / elimination process

1.2.1. General principles

Polanyi-Hammond postulate:

When two neighboring species on the reaction coordinate are related in their energy, they are as well in their structure.

TS2 much closer to the σ -complex than to the π -complex

Applications:

- → Lowering the activation barrier makes a reaction faster
- \rightarrow For S_FAr: TS2 looks rather similar to the σ -complex
- \rightarrow Everything stabilizing the σ -complex accelerates the reaction rate
- \rightarrow Everything destabilizing the σ -complex decrease the reaction rate

1.2.1. General principles

How can one speed up the reaction? How are the substituents chosen?

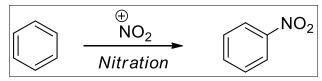
Substituents are generally divided in two groups:

- EDG (Electron Donating Group) e.g. –OMe, having +M / +I effect
- EWG (Electron Withdrawing Group) e.g. –COOMe, having -M / -I effect

EDG stabilizes the σ -complex making the reaction faster EWG destabilizes the σ -complex making the reaction slower (how much faster/slower is depending on the substituent properties)

Examples of EDG / EWG:

EDG with +M effect: $-NR_2$, $-NH_2$, -OH, -OR


EDG with +I effect: -Alkyl, -SiR₃

EWG with -M effect: -NO₂, -COOR, -COR, -CHO, -CN, -SO₃H, -SO₂R

EWG with –I effect: -NH₃+, -NR₃+, -CF₃

1.2.2.1. Nitration

• Electrophile = NO_2^+ , nitronium ion $O_{N=0}^+$

- Practical methods to generate the electrophile:
 - Mild: autoprotolysis of nitric acid, in concentrated HNO₃ (68%) the amount of NO₂⁺ is 3-4% $2HNO_3 \leftrightarrow NO_2 + H_2O + NO_3$
 - More forcing conditions: mixture of concentrated HNO_3 + concentrated H_2SO_4 (nitrosulfuric acid) $HNO_3 + 2H_2SO_4 \xrightarrow{+} NO_2 + H_3O^+ + 2HSO_4^-$
 - Strongest conditions: nitroniumtetrafluoroborat salt NO₂⁺ BF₄⁻
- Examples for activated substrates: mild conditions are used

5

1.2.2.1. Nitration

Examples for non-activated substrates: more forcing conditions are required

$$\begin{array}{c|c} & \text{HNO}_3 \text{ conc} \\ & \text{H}_2 \text{SO}_4 \text{ conc} \\ \hline & \text{non- activated} \\ & \text{substrate} \\ \end{array}$$

• Examples for deactivated substrates:

• Example for an ipso-substitution :

1.2.2.1. Nitration

Nitro groups are important synthetic intermediates

Application for dyes, explosives (TNT, picric acid) and basic industrial processes

Most important follow-up reaction: reduction of the nitro group to an aniline with a variety of reducing reagents

1.2.2.2. Halogenation: bromination / chlorination

- Electrophile = Br⁺ / Cl⁺
 - Fluorination: not controlable
 - lodination: requires promoters
- Practical methods to generate the electrophile:
 - Bromination: $Br \longrightarrow Br + Or \longrightarrow Br \begin{bmatrix} FeBr_3 \\ Or \\ AlBr_3 \end{bmatrix}$ catalytic
 - Chlorination: CI——CI + AICI₃ → CI AICI₄

para bromophenol

Typical examples:

substrate

OMe
$$Br_2$$
, CCI_4 Br_2 , CCI_4 Br_3 in this case LA = Br_2

- Friedel-Crafts alkylation: $E^+ = R_3C^+$ (carbenium ion, R=H,alkyl)
- Friedel-Crafts acylation: E⁺ = RCO⁺ (acylium cation, R=alkyl,aryl)

1.2.4.1. Friedel-Crafts alkylation

$$\begin{array}{c|c}
& & \\
\hline
& &$$

- Practical methods to generate the electrophile:
 - From protonation of alkenes: the selectivities of the carbenium ion apply

From alcohols and acid:

From alkyl halides and a Lewis acid:

$$R \leftarrow \frac{X}{-LAX} \rightarrow R$$
 $X = -Br, -I, -CI$
 $X =$

Caution: all aspects of carbenium ions apply:

Stability: Benzylic > allylic > tertiary > secondary > primary methyl

First issue:

Wagner-Meerwein type rearrangements prone to isomerization It is difficult to make primary alkyl chains under Wagner-Meerwein

For example:

Second issue: alkyl groups are σ -donors which means:

→ The product is more reactive than the starting material and therefore the reaction is difficult to stop at the mono-alkylation stage

1.2.4.2. Friedel-Crafts acylation

$$\frac{R-C=O}{Friedel\ Crafts}$$
Acylation

 Practical methods to generate the electrophile: from acid halogenide (acid chloride or anhydride) and a catalytic amount of a Lewis acid (AlCl₃)

$$\begin{array}{ccc}
O & AICI_3 & R-C=O \\
R & X & R-C=O
\end{array}$$

$$\begin{array}{cccc}
AICI_3 & R-C=O \\
R-C=O & AICI_2
\end{array}$$

$$\begin{array}{cccc}
X = -F, -CI, -Br, & & \oplus \\
-I, -RCOO & acylium cation
\end{array}$$

11

Typical examples:

$$Ac_2O$$

$$cat. AlCl_3$$

$$Ac_2O = O$$

$$acetophenone$$

$$Ac_2O = O$$

$$AlCl_3$$

$$AlCl_3$$

$$intramolecular$$

- Important characteristics compared to Friedel-Crafts alkylation:
- → The introduction of a carbonyl group (EWG) decreases the reactivity
- → It prevents the risk of double acylation (however possible for intramolecular

reactions)

alternative 2 steps procedure:

1.2.2.4. Sulfonation

$$\begin{array}{c|c}
& & \\
& & \\
\hline
& & \\$$

- Electrophile = SO₃H⁺, sulfonium ion
- Preparative Methods for Electrophile SO₃H⁺ preparation:
- Autoprotolysis of sulfuric acid

$$2 H_2 SO_4$$
 \longrightarrow $H_2 SO_4$. $SO_3 + H_2 O$ \longrightarrow $SO_3 + HSO_4^- + H_3 O^+$

More forcing condition: Oleum (mixture of H₂SO₄(100%) and SO₃ (up to 30%))

Representative examples:

B) Historical purification of benzene by removal of thiophene after distillation of crude oil

Electron-rich reacts faster then benzene

Washed out by water

Thiophene-free benzene

1.2.2.5. Chlorosulfonation

$$\begin{array}{c}
 & \overset{\oplus}{\text{SO}_2\text{CI}} \\
 & & & \\
\hline
 & & & \\
\hline
 & & & \\
\hline
 & & & \\
\hline
 & & & \\
\hline
 & & & &$$

Reagent: Chlorosulfonic acid CISO₃H

Representative example: sulfochlorides are synthetically very versatiles

14

1.2.2.6. Deuteration by ipso-substitution

Selective method to introduce a ²H (D) deuterium label