Exercices Biochimie I - Solutions

Problèmes Leçon 1

- 1. A) pH = 3
 - B) 10⁻⁴ M
- 2. Le rapport des formes protonées et déprotonées [AH]:[A-] = 10:1Le pourcentage de la forme protonée = 90.9%
- 3. Au pH 7, il a plusieurs états d'ionisation. Ici, les donneurs et accepteurs de liaison hydrogène sont indiqué pour l'état d'ionisation qu'on trouve le plus fréquent au pH 7 :

4.

acides aminé	code à trois lettre	code à une lettre	charges nette
aspartate	Asp	D	-1
histidine	His	Н	0
lysine	Lys	К	+1
tryptophane	Trp	w	0
cystéine	Cys	С	0

- 6. lysine, arginine, (histidine)
- 7. [l'acide aminé neutre] : [l'acide aminé zwitterion] = 1 : 100'000

1.

2. Une hélice: 120/2 = 60 kDa

60'000/110 Da = 545.45 aa

545*1.5 Å = 817.5 Å

→ Longueur ~ 82 nm

3.

4. hélice α

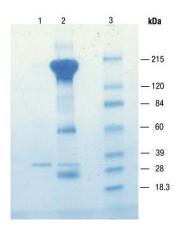
5. lysozyme: 5 x hélices α , 2 x chaînes β

protéine fluorescente verte: 11 x chaînes β (et 4 petits hélices α)

myoglobine: 8 x hélices α

calmoduline: 7 x hélices α (et 4 petits chaînes β)

Problèmes Leçon 3


1. A = 1.796

% lumière transmis: 1.6%

- 2. Log (masse) = $-0.89 \times (mobilité) + 5.28$ m = 34.1 kDa
- Comparer les masses: ils sont différents → chromatographie par gel filtration
 Comparer les points isoélectriques: ils sont différents → chromatographie par échange d'ions
 Cherchez si il existe des ligands (en pubmed, google, etc.) → chromatographie d'affinité
- 4. Ligne 1: une protéine, environ 30 kDa, petit quantité

Ligne 2: environ 4 protéines, environ 200, 60, 30 et 25 kDa, une en grande quantité

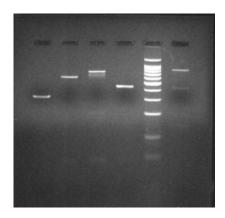
Ligne 3: marker de 7 protéines connus

Spectrométrie de masse SDS-PAGE

1. (a) 5'-AGTAC-3'

(b) 5'-TACGGGCAGG-3'

2.


3. (a)
$$[T] + [C] = 0.5$$

4. Environ 235 pairs de bases

5.

Problèmes Leçon 5

- 1. 5'-GTATTTGTGACAGGGCAAAGCCAACACCTTCCCCCACTGATGCC...-3'
 3'-CATAAACACTGTCCCGTTTCGGTTGTGGAAGGGGGTGACTACGG...-5'
- 2. $(10'000-5)/4^6 = 2.44 \rightarrow 2-3$ fois
- 3. $2^{20} = 1'048'576 \times 0.1 \text{ ng} \rightarrow 105 \text{ µg}$
- 4. Ligne 1 à 6 : 500 pdb, 2500 pdb, 4000 pdb, 1200 pdb, marker, 5000 pdb

 5'-ATTA<mark>TTGACA</mark>CCCCGGGATGCATTTAATGATTATAATGGATCCCATGAGCCTGTACGTATACCTATGATTAAGGAGGTTGA CCTATGCGAGCTTTTAGTCCTCCTAGTTAAGGTAGTA-3'

Promoteur: -35 region: TTGACA Pribnow box: TATAAT

Shine-Dalgarno: AGGAGGT

mRNA: caugagccuguacguauaccuaugauuaaggagguugaccuaugcgagcuuuuaguccuccuaguuaagguagua

Remarque: l'ARN polymérase démarre la synthèse de l'ARNm à environ 10 nucléotides en aval de la Pribnow Box. L'ARNm peut donc être un peu plus court ou plus long que la solution spécifiée à l'extrémité 5 '.

protein: MRAFSPPS

2.

Translate Tool - Results of translation

Open reading frames are highlighted in red. Please select one of the following frames - in the next page, you will be able to select your initiator and retrieve your amino acid sequence:
5'3' Frame 1
Met D V Stop Met T G R C F
5'3' Frame 2
W T Y R Stop Q V D V
5'3' Frame 3
G R I D D R Stop Met F
3'5' Frame 1
E T S T C H L Y V H
3'5' Frame 2
K H L P V I Y T S

3.

3'5' Frame 3 NIYLSSIRP

DNA	RNA
Deoxy ribose	Ribose
Thymine	Uracile
+	-
Double hélice	Pas régulière
Information	Synthèse des protéines
	Deoxy ribose Thymine + Double hélice

4. 5'-atgagagccctgctggcgcg-3'

5'-tcagagggccaggccattct-3'

- Quelques acides aminés ont plusieurs codons → La séquence de DNA peut changer sans changer la séquence de la protéine ('mutations silences').
- Information de la séquence (130 acides aminés, 12% identité) → On ne peut pas dire si les deux protéines sont évolutivement apparentées.
 Information de la structure (même structure tertiaire) → On peut dire que les deux protéines
- 3. Nombre acide aminés: 255

Pourcentage d'identité dans l'alignement: 45%

sont évolutivement apparentées avec une grande probabilité.

```
GENE ID: 7167 TPI1 | triosephosphate isomerase 1 [Homo sapiens]

(Over 10 PubMed links)

Score = 193 bits (491), Expect = 4e-49, Method: Compositional matrix adjust. Identities = 113/250 (45%), Positives = 148/250 (59%), Gaps = 6/250 (2%)

Query 2 RHPLVMGNWKLNGSRHMVHELVSNLRKELAGVAGCAVAIAPPEMYIDMAKREAEGSHIML 61 R V GNWK+NG + + EL+ L A V APP YID A+++ + I + Sbjct 5 RKFFVGGNWKMNGRKQSLGELIGTLNAAKV-PADTEVVCAPPTAYIDFARQKLD-PKIAV 62

Query 62 GAQNVDLNLSGAFTGETSAAMLKDIGAQYIIIGHSERRTYHKESDELIAKKFAVLKEQGL 121 AQN +GAFTGE S M+KD GA ++++GHSERR ESDELI +K A +GL Sbjct 63 AAQNCYKVTNGAFTGEISPGMIKDCGATWVVLGHSERRHVFGESDELIGQKVAHALAEGL 122

Query 122 TPVLCIGETEAENEAGKTEEVCARQIDAVLKTQGAAAFEGAVIAYEPVWAIGTGKSATPA 181 + CIGE E EAG TE+V Q + A + V+AYEPVWAIGTGKHATP Sbjct 123 GVIACIGEKLDEREAGITEKVVFEQTKVI--ADNAKDWSKVVLAYEPVWAIGTGKTATPQ 180

Query 182 QAQAVHKFIRDHI-AKVDANIAEQVIIQYGGSVNASNAAELFAQPDIDGALVGGASLKAD 240 QAQ VH+ +R + + V +A + I YGGSV + EL +QPD+DG LVGGASLK + Sbjct 181 QAQEVHEKLRGWLKSNVSDAVAQSTRIIYGGSVTGATCKELASQPDVDGFLVGGASLKPE 240

Query 241 AFAVIVKAAE 250 F I+ A + Sbjct 241 -FVDIINAKQ 249
```

4. 20⁸ peptides

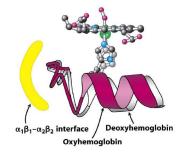
Moyenne poids moléculaire d'une acide aminé: 110 Da Moyenne poids moléculaire d'un peptide de 8 acide aminés: 880 Da 37.5 pg

5. Glutamate: aspartate, glutamine, lysine

Asparagine: serine, aspartate, histidine

Tyrosine: histidine, phenylalanine, tryptophane

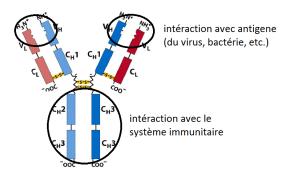
1. Poumons: 95% saturation


Tissue: 32% saturation

Capacité de transport: 63%

2.

	Hémoglobine	Myoglobine
Structure	Tétramère	Monomère
Fonction	Transport O₂	Stockage O ₂
Intéraction O ₂	Affinité faible	Affinité fort


3. Fixation $O_2 \rightarrow$ déplacement atome de fer (au milieu de la groupe hem) \rightarrow déplacement d'une residue de histidine \rightarrow changement de la conformation d'une hélice alpha \rightarrow changement de la conformation d'une surface d'interaction entre deux sous-unités de hémoglobine

4. Pression O₂

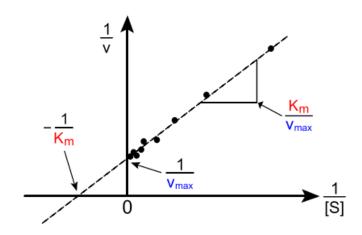
Concentration CO₂

5.

Le système immunitaire peut produire des milliards d'anticorps différents.

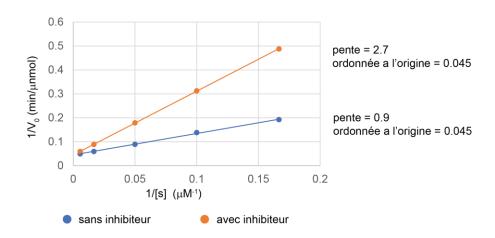
Problèmes Leçon 9

1. $\Delta G = \Delta G^{\circ} + RTInK = -6.6 \text{ kJ/mol}$


Direction de la réaction: A → B.

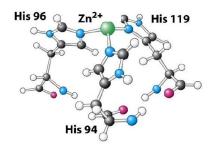
A l'équilibre: [A] = 0.29 mM, [B] = 0.014 mM

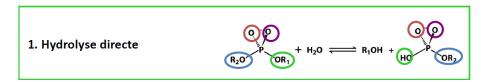
Vitesse de cette réaction: On peut rien dire de la vitesse.


2. (a) La réaction catalysée par la pénicillinase obéit à la cinétique de Michaelis-Menten.

$$K_M$$
 = 5.2 μM

- (b) V_{max} = 0.45 μ M/min
- (c) $K_{cat} = 40178 \text{ min}^{-1}$

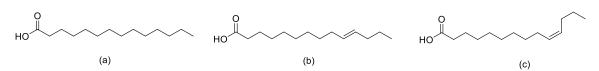

- 1. (a) V_{max} sans inhibiteur = 22.3 μ mol/min V_{max} avec inhibiteur = 22.3 μ mol/min
 - (b) Compétitif


 $V_{max} = 22.3 \mu mol/min$

2.

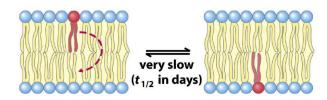
(a) Le zinc est fixé par trois chaînes latérales (b) d'histidine

3. (a)



2. Intermédiaire covalent
$$R_2O$$
 P OR_1 P OR_2 P OR_2 P OR_2 P OR_3 P OR_4 P OR_4 P OR_5 P OR_6 P OR_7 P OR_8 P OR_9 P OR_9

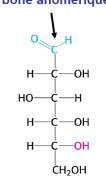
3. (b)



1.

Propriétés différentes entre acides gras saturé et insaturé: 'solubilité', température de transition de phase

- 2. Effet hydrophobe
- 3. Les lipides glycosylés ont une tête qui est polaire et grand qui ne préfère pas à passer la région hydrophobe au milieu de la membrane.


4.

D-galactose

OH OH OH

beta-D-galactopyranose

- (a) Carbon anomèrique
 - carbone anomérique (C1)

- (b) Cetose: un glucide avec une group de cétone
- (c) Glycogen: polymère de glucose

Problèmes Leçon 12

- 1. (a) $\Delta G^{\circ \prime}$ = 31.4 kJ/mol K'_{eq} = 3.18*10⁻⁶
 - (b) En équilibre: pyruvate : phosphoénolpyruvate = 10600
- 2. $\Delta G^{\circ\prime}$ = 7.1 kJ/mol En équilibre: glucose 6-phosphate : le glucose 1-phosphate = 18 : 1
- - (b) $\Delta G^{\circ \prime}$ = 35.9 kJ/mol
- 4. Regardez les fichiers PPT du leçon 12.