Enoncé l'examen de chimie générale avancée Partie commune

Novembre 2022

BAREME DE L'EXAMEN: total 70 points

Question 1-10: 40 points (VRAI-FAUX)

Question 11:18 points

Question 12:12 points

Un tableau périodique et une liste de constantes se trouvent à la fin de ce cahier.

Questions de type Vrai ou Faux

Pour chaque question, marquer **sur le cahier de réponse** (sans faire de ratures) la bulle "a VRAI" si l'affirmation est vraie, ou la bulle "b FAUX" si elle fausse.

Question 1

Les combinaisons des nombres quantiques suivants permettent de caractériser un seul électron dans un atome polyélectronique

1a
$$n = 5, l = 5, m_1 = -2, m_s = +1/2$$

1b
$$n = 4, l = 3, m_1 = -2, m_s = +1/2$$

1c
$$n = 4, m_1 = -2, m_s = +1/2$$

1d
$$n = 3, m_1 = -2, m_s = +1/2$$

Question 2

Si on enlève un électron à certaines espèces chimiques, on augmente leur nombre d'électrons célibataires. Indiquer si cette affirmation est vraie ou fausse pour les cas suivants en considérant l'état fondamental.

- **2a** Co²⁺
- **2b** Mn²⁺
- 2c Na
- **2d** O²⁻

Question 3

Indiquer si les affirmations suivantes sont vraies ou fausses :

- 3a tous les électrons d'un atome peuvent participer à la formation de liaisons chimiques
- **3b** un atome ayant des électrons uniquement dans les orbitales s, p, et d ne peut pas avoir plus de 5 électrons célibataires à l'état fondamental
- **3c** le fluor est un oxydant
- **3d** un élément avec une faible énergie d'ionisation aura tendance à former des anions

Question 4

Les molécules suivantes ont un moment dipolaire nul.

- 4a BH₃
- **4b** NH₃
- 4c CCl₄
- 4d CHCl₃

Question 5

L'atome central des molécules de la liste suivante est hybridé sp^3d

- 5a ClO_4^-
- **5b** ClF₃
- 5c PCl₅
- 5d ICl₅

Question 6

Soit la réaction suivante :

$$16 \text{ HCl } (aq) + 2 \text{ KMnO}_4(aq) \rightarrow 5 \text{ Cl}_2(g) + 2 \text{ MnCl}_2(aq) + 2 \text{ KCl}(aq) + 8 \text{ H}_2\text{O}(l)$$

On fait réagir 2.4 mol HCl avec 0.4 mol KMnO₄ dans une solution aqueuse. En considérant que la réaction est complète, indiquer si chaque proposition de la liste suivante est vraie ou fausse:

- **6a** à la fin de la réaction, on obtient 0.3 mol MnCl₂
- **6b** HCl est le réactif limitant
- **6c** à la fin de la réaction, il reste 0.1 mol KMnO₄
- \hat{b} d à la fin de la réaction, le volume de Cl_2 obtenu à une pression de 1 bar et une température de 35°C est supérieure à 22.4 L

Ouestion 7

Soit la réaction rédox suivante (non équilibrée)

$$HSO_3^-(aq) + Cr_2O_7^{2-}(aq) + H^+(aq) \rightarrow SO_4^{2-}(aq) + Cr^{3+}(aq) + H_2O(l)$$

Après équilibrage de la réaction et en utilisant, pour les coefficients stoechiométriques, les nombres entiers les plus petits possibles, indiquer la (les) affirmation(s) correcte(s) dans la liste suivante:

Donnée : le degré d'oxydation de l'oxygène vaut -2 dans toutes les molécules

7a les coefficients stoechiométriques de HSO₃⁻ et H₂O valent 4 et 5, respectivement

7b les coefficients stoechiométriques de H⁺ et H₂O valent 5 et 4, respectivement

7c HSO₃⁻ est le réducteur

7d H⁺ est l'oxydant

Question 8

Soit la réaction suivante à l'équilibre dans un milieu fermé

$$H_2(g) \rightleftharpoons 2 H(g)$$

Indiquer si l'affirmation est vraie ou fausse pour chaque cas de la liste suivante

8a
$$\Delta_{\rm r} {\rm H}^0 > 0$$

8b
$$\Lambda_r S^0 > 0$$

8c
$$\Delta_r G^0 < 0$$
 lorsque $T < \Delta_r H^0 / \Delta_r S^0$

8d $\Delta_r G^0 > 0$ à chaque température

Question 9

Soit la réaction suivante à l'équilibre dans un milieu fermé

2 HgO (s)
$$\rightleftharpoons$$
 2 Hg (l) + O₂ (g)

$$\Delta_{\rm f} H^0 ({\rm HgO}) = -90.8 {\rm kJ/mol}$$

Les perturbations suivantes déplacent l'équilibre vers les produits. Indiquer si cette affirmation est vraie ou fausse pour chaque cas de la liste suivante :

- 9a le retrait de Hg(l)
- **9b** le retrait de $O_2(g)$
- **9c** l'augmentation du volume
- **9d** l'augmentation de la température

Question 10

Pour la réaction suivante à 298 K

$$A(g) + B(g) \rightleftharpoons 2C(g)$$

la constante d'équilibre vaut 0.5. Indiquer si les affirmations suivantes sont vraies ou fausses pour un mélange où l'activité de chaque espèce est égale à 0.5

10a
$$\Delta_{\rm r}G^0 > 0$$

$$10b \qquad Q > K$$

10c la réaction évolue spontanément des réactifs vers le produit

10d l'activité de C (g) à l'équilibre est plus grande que 0.5

Question 11 (18 points)

Soit une pile, constituée de deux électrodes à hydrogène reliées par un pont salin à 25°C. Pour les deux électrodes, l'hydrogène gazeux barbote à une pression de 1 bar sur une électrode de platine inerte dans une solution aqueuse de 0.1 L. La solution aqueuse du premier compartiment contient 0.01 mol NaCl et celle du deuxième compartiment contient 0.01 mol NaF.

Données : pK_a (HF, F⁻) = 3.2.

Considérer que les valeurs des activités sont égales aux valeurs numériques des concentrations en mol/L.

- a) Calculer le pH des solutions des deux compartiments
- b) Identifier l'anode et la cathode et justifier brièvement votre choix. Indiquer le sens du déplacement des électrons dans le circuit extérieur. Calculer la force électromotrice de la pile.
- c) On ajoute 0.006 mol HCl aux deux compartiments. Calculer la nouvelle force électromotrice de la pile.

Question 12 (12 points)

Soit une solution maintenue à température constante qui contient le réactif A initialement à une concentration $[A]_0$ qui se se décompose selon une cinétique d'ordre 2. Après 30 s de réaction à 25°C, la concentration de A a diminué de moitié ($[A] = [A]_0/2$).

- a) Calculer le temps nécessaire à la décomposition de 75% de [A]₀ à 25°C
- b) Calculer la température à laquelle on devrait effectuer cette réaction pour que la constante de vitesse soit le double de celle mesurée à 25°C sachant que l'énergie d'activation vaut 60 kJ/mol et que la cinétique suit la loi d'Arrhenius.

4.002602 e . Helium	20.1797	, a)	Neon	0	39.948		Argon	0	83.798	°	Krypton 0	131.293	Xe 2.60	Xenon 0	(222)	٠	Radon 0	}	Ono	unoctium
Fe ,	18.998 10	3.98 Ne	Fluorine	-	35.453 18	3.16 Ar	Chlorine	+1,3,5,7,-1	79.904 36	2.96 Kr	Bromine K +1,5,-1	126.904 54	2.66 Xe	lodine 141,5,7,-1	208.98 84 🛨 (209) 85 🛨 (210) 86 🛨 (222)	At 2.2 Rn		118 🛨		Ununquadium Ununpentium Ununhexium Ununseptium Ununoctium
	15.9994 9	3.44 F			32.065 17	2.58 Cl 3.16			78.96 35	1.55 Fe 1.83 Co 1.88 Ni 1.91 Cu 1.90 Zn 1.65 Ga 1.81 Ge 2.01 As 2.18 Se 2.55 Br 2.96		127.60 53	2.10		(209) 85 🖈	2.0 At	um Ast	116 🛨 (292) 🛨 911	Ons	cium Unung
		0	Oxygen	-2		တ	Sulfur	+2,4,6,-2		Se	Selenium +2,4,6,-2		ح	Tellurium +2, 4 ,6,-2	18 84 🖈	Po .	Polonium +2, 4	116 🛠	Uuh	Ununhex
	7 14.0067	N 3.04	Nitrogen	+2,3,4,5,-2,-3	15 30.97361 16	P 2.19	Phosphorus	+3,4,5,-3	33 74.92160 34	As 2.18	Arsenic +3,5,-3	51 121.760 52	1.9 Ru 2.20 Rh 2.28 Pd 2.20 Ag 1.93 Cd 1.69 In 1.78 Sn 1.96 Sb 2.05 Te 2.10	Antimony +3,5,-3		TI 1.62 Pb 2.33 Bi 2.02 Po 2.0	Bismuth +3,5	115 🛠	Uup	Ununpentium
	12.0107 7	C 2.55	Carbon	+2,4,4	28.0855 15	Si 1.90	Silicon	+2,4,4	72.64 33	3e 2.01	Germanium +2,4	118.710 51	3n 1.96	Tin +2, 4	207.2 83	b 2.33	Lead +2,4	114 🛨 (289) 115 🛨	Uuq	nunquadium
	10.811 6	2.04	Boron	ب	13 26.981538 14	Al 1.61	Aluminum	÷3	69.723 32	1.81	Gallium C	114.818 50	1.78	Indium +3	200.59 81 204.3833 82	1.62 F	Thallium +1,3			Ununtrium
	2	Ω			13 2	₹	¥		65.409 31	1.65 Ga		112.411 49	1.69 In	E	200.59 81			(285) 113	Uut	icium Un
ıts									63.546 30	⁰ Z	Zinc +2		ප			₹	Mercury +1,2	72) 112 🛨	ວົ	m Copern
mer										Cu 1.9	Copper +1,2	106.42 47 107.8682 48	Ag 1.9	Silver +1	79 196.9	Au 2.5	Gold +1,3	111 🛨 (27	Rg	Roentgeniu
Periodic Table of the Elements					(Br		Š		58.6934 29	Ni 1.91	Nickel +2,3		∂d 2.20	Palladium +2,4	192.217 78 195.078 79 196.966 80	Ir 2.2 Pt 2.28 Au 2.54 Hg 2	Platinum +2, 4	104 🛨 (261) 105 🛨 (262) 106 🛨 (266) 107 🛨 (264) 108 🛨 (277) 109 🛨 (268) 110 🛨 (281) 111 🛨 (272) 112 🛨 (285) 113 🛨	Ds	Meitnerium Darmstadtium Roentgenium Copernicium
of th				ight	*Electronegativity (Pauling)		Possible Oxidation States		58.9332 28	1.88	Cobalt +2,3	101.07 45 102.9055 46	ا 2.28	Rhodium +2,3,4	192.217 78	2.2	1ridium +2,3, 4 ,6	* (268) 11		itnerium
ple (1.00794 Atomic weight			Possible (Ī	55.845 27	1.83 C		101.07 45	2.20 RI	Ruthenium R +2,3, 4 ,6,8	190.23 77			(277) 109	Ĭ	Hassium Me
c Ta					Ξ.	Y.Z Hydrogen	+1,-1		.93804 26	Fe Fe		(98) 44	₉		186.207 76	1.9 OS 2.2	Osmium 1 +2,3, 4 ,6,	64) 108 🛠	£	
iodi				Atomic number 1		SVMDOI			51.9961 25 54.938	Σ	Manganese +2,3,4,6,7	3 •	ပ	Technetium +4,7		æ	Rhe +2,4,	107 🛨 (2	뮵	Bohrium
Per				Atomi						Ti 1.54 V 1.63 Cr 1.66	Chromium +2,3,6	2 95.94 43	Zr 1.33 Nb 1.60 Mo 2.16	Molybdenum +2,3,4,5, 6	183.84 75	W 2.36	Tungsten +2,3,4,5,6)6 🛨 (266)	Sg	Seaborgium
									50.9415 24	1.63	Vanadium +2,3,4,5	91.224 41 92.90638 42	09.1	Niobium +3,5	178.49 73 180.9479 74	Ta	Tantalum +5	* (262) 10		Dubnium
									47.867 23	1.54 V		91.224 41	1.33 N	Ę	178.49 73	1.3 T	afinium T +4	(261) 105	P P	dium
									44.9559 22	ت پ	Titanium +2,3, 4	88.9058 40	2 Zr		72	ries H 1.3	Hafnium +4	104	莶	Rutherfor
										Sc 1.3	Scandium +3		Υ 1.22	Yttrium +3		Lanthanide Ser			Actinide	Selles Odine
	_	7	E		24.3050	1.31	Magnesium	+5	40.078 21	1.00	Calcium +2	87.62 39	Sr 0.95	Strontium +2	137.327	a 0.89	Barium +2	(226)	Ra 0.9	Radium +2
	9.012182	Be _{1.5}	Beryllium	+5		Mg	Mag		٥	ပ္ပ	0	, ,	ഗ	Ó	9	$\mathbf{\omega}$	_	ω.	8	-
1.00794 H 2.2 Hydrogen +1,-1	6.941 4 9.012182	i _{0.98} Be _{1.57}	Lithium Berylliu	+1 +2	11 22.98977 12	Na 0.93 Mg 1.31	Sodium Mag	-	39.0983 20	K 0.82 Ca 1.00 Sc 1.36	Potassium C +1	85.4678 38	Rb 0.82 S	Rubidium Si	132.905 56	Cs 0.79 Ba 0.89 Lanthanide Series	Cesium I	87 🛨 (223) 88	Fr 0.7 Ra	Francium +1

₩ 18

GROUP 1 IA

La 1.10 Ce 1.12 Pr 1.13 Nd 1.14 Pm Samarium Europium Samarium Samarium Europium Samarium Samarium Europium Samarium Sama AC 1.1 Th 1.3 Pa 1.5 U 1.38 Np 1.36 Pu 1.28 Am 1.3 Cm 1.3 Bk 1.3 Cf 1.3 Es 1.3 Fm 1.3 Md 1.3 No 1.3 Lx Actinium Thorium Thoriu $\frac{57}{138.9055}[88\ 140.116] \\ 59 \ 140.116[59\ 140.3077][60\ 144.24] \\ 61 \ 24 \ 140.316] \\ 62 \ 162.256[62\ 158.9253] \\ 64 \ 157.25[63\ 158.9253] \\ 65 \ 158.9253[66\ 162.500] \\ 67 \ 162.500[67\ 164.9303] \\ 68 \ 167.259[69\ 168.9342] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.930] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.259[69\ 164.9303] \\ 70 \ 162.2$ Lanthanides Actinides

CONSTANTES PHYSIQUES

Constante	Symbole	Valeur
Accélération de la pesanteur	g	9,80655 m s ⁻²
Charge de l'électron	e	1,602·10 ⁻¹⁹ C
Constante d'Avogadro	$N_{ m A}$	$6,022 \cdot 10^{23} \text{ particules mol}^{-1}$
Constante de Faraday	F	96485,3 C mol ⁻¹
Constante des gaz parfaits	R	8,31441 J K ⁻¹ mol ⁻¹ 0,08205 L atm K ⁻¹ mol ⁻¹ 0,08314 L bar K ⁻¹ mol ⁻¹
Constante de Planck	h	6,626176·10 ⁻³⁴ J s
Constante de Rydberg	R_{∞}	$1,09737 \cdot 10^7 \text{ m}^{-1}$
Masse de l'électron	$m_{ m e}$	9,109·10 ⁻³¹ kg 5,5·10 ⁻⁴ u
Masse du neutron	$m_{ m n}$	1,675·10 ⁻²⁷ kg 1,008 u
Masse du proton	$m_{ m p}$	1,673·10 ⁻²⁷ kg 1,0073 u
Vitesse de la lumière dans le vide	c	2,99792458·10 ⁸ m s ⁻¹
Volume molaire normal du gaz parfait	$V_{ m m}$	22,41 L mol ⁻¹
Unité de masse atomique	u	1,660565·10 ⁻²⁷ kg