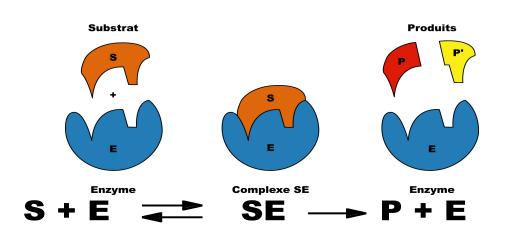
Partie spécifique SV

Cinétique enzymatique
Propriétés des solutions- potentiel chimique
(Thermodynamique en biologie)

Thèmes spécifiques: SV-1 CINETIQUE


- 1. Introduction
- 2. Cinétique de réactions combinées
 - Equilibre
 - Réactions séquentielles
- 3. catalyse enzymatique: Michaelis-Menten
- 4. exemple: Anhydrase carbonique

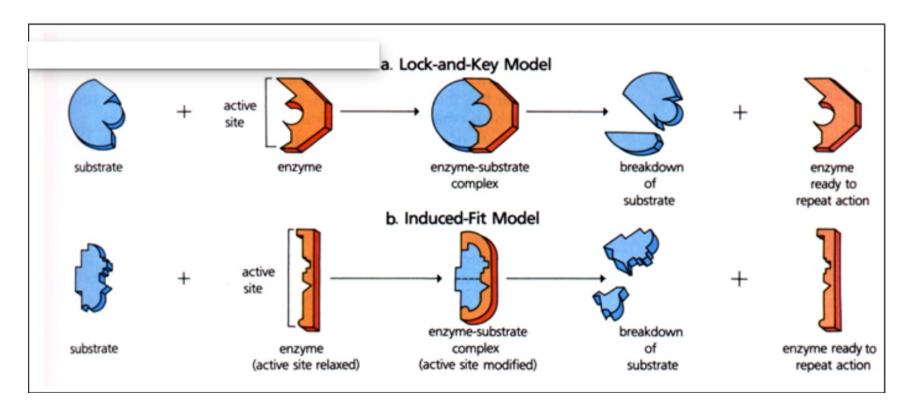
Ce qu'il faut savoir (cinétique-SV)

- Cinétique des réactions d'équilibre d'ordre 1 de type A
 B
- 2. Rapport entre l'énergie d'activation d'une réaction et de sa réaction inverse
- Limites de validité de l'équation de Michaelis-Menten
- Application de la loi de Michaelis Menten
- Effet d'un inhibiteur (réversible) compétitif

Catalyse enzymatique

Enzyme = catalyseur biologique = grandes protéines avec structure 3D

qui leur donne une cavité dans laquelle la réaction se déroule. La cavité est souvent spécifique à une molécule d'un réactif donné (substrat).


Reconnaissance spécifique du substrat Modulable biologiquement

Interaction enzyme-substrat

Changement de configuration de la molécule qui abaisse l' E_a de la réaction et l'accélère d'un facteur allant de 10^7 à 10^{17} .

$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$		Vitesse réaction Mol L-1 s-1	Énergie d'activation (kJ/mol)
	Non catalysée	10-8	71
	Catalyseur inorganique	10-4	50
	catalase	10 ⁷	8

Spécificité de la catalyse: complexe enzyme-substrat

Modèle clé serrure (Emil Fisher (1852- 1919) Prix Nobel 1902

Modèle de l'ajustement induit (Daniel Koshland, 1958)

- -la liaison entre l'enzyme et le substrat est relativement faible
- -Suite à la liaison, l'enzyme et le substrat changent leur conformation

Mécanisme d'adaptation induite

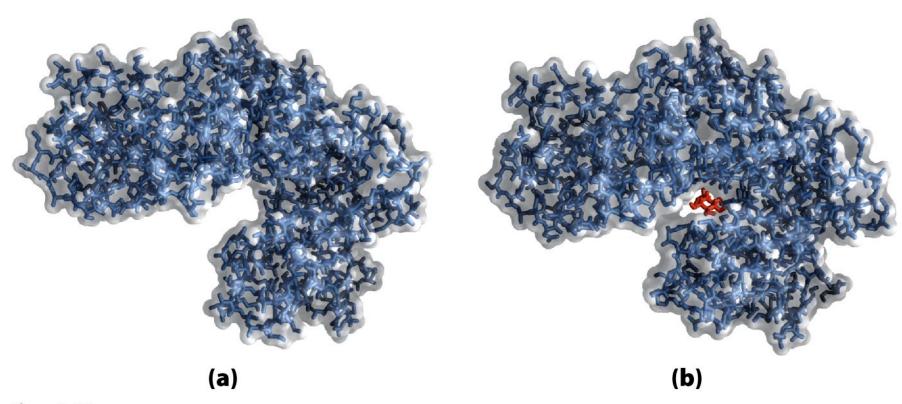
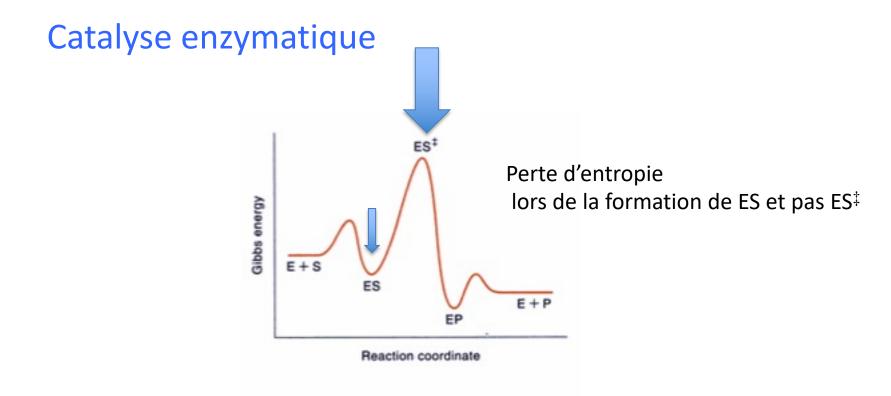



Figure 6-22
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Hexokinase has a U-shaped structure (PDB ID 2YHX). The ends pinch toward each other in a conformational change induced by binding of D-glucose (red).

Enzyme stabilise le substrat par des forces intermoléculaires (ponts hydrogène, électrostatique...)

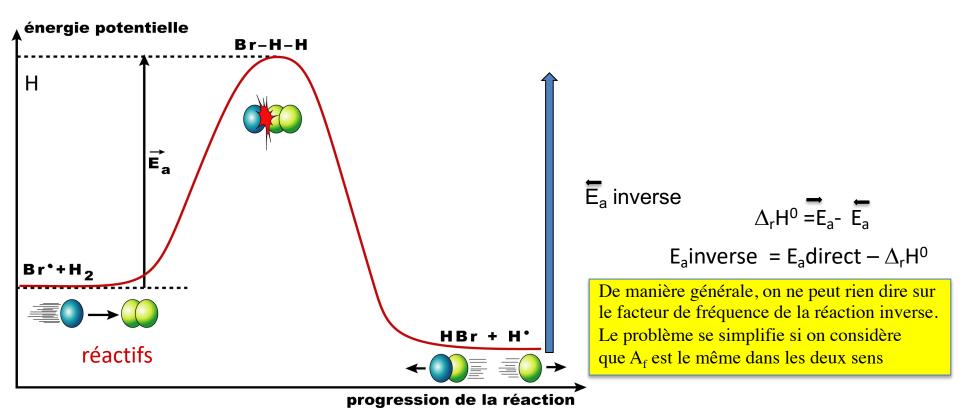
Les interactions sont optimisées entre l'enzyme et le substrat dans l'état de transition ES‡ (structure intermédiaire entre S et P). Le complexe ES est ainsi stabilisé et la barrière d'activation entre ES et ES‡ est abaissée.

Cinétique de Michaelis-Menten

$$E + S \xrightarrow{k_1 \atop k_{-1}} ES \longrightarrow E + P$$

1) Equilibre

$$A \Rightarrow B$$


2) Réactions successives

$$A \xrightarrow{k_1} I \xrightarrow{k_2} P$$

Interprétation de l'énergie d'activation

énergie d'activation E_a = énergie du complexe activé (état de transition)

$$Br' + H_2 \longrightarrow HBr + H'$$

produits

Théorie de l'état de transition

Annexe

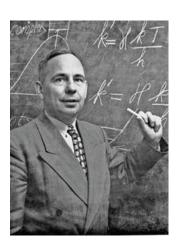
$$k = A_f e^{-\frac{E_a}{RT}}$$

Description empirique Pas de détail microscopique Pas de lien avec la thermodynamique A_f et E_a doivent être déterminés expérimentalement

Arrhénius (1859-1927)

Théorie de l'état de transition

Lien avec la thermodynamique:


hypothèse: l'état de transition est en équilibre avec les réactifs

$$k = Ce^{-\Delta_{r}G^{0*}/RT} = Ce^{\frac{\Delta_{r}S^{0*}}{R}}e^{-\Delta_{r}H^{0*}/RT}$$

Entropie standard d'activation: ΔS^{0*}

Enthalpie standard d'activation: ΔH^{0*}

$$\Delta H^{0*} \approx E_a$$

Eyring (1901-1981)

Réactions d'équilibre

$$A \stackrel{k_1}{\rightleftharpoons} B$$

Soit ordre 1 dans les deux sens (réactions élémentaires)

Thermodynamique

$$K = [B]_{eq}/[A]_{eq}$$

$$K = k_1/k_1$$

Cinétique

$$v_1 = k_1 [A]$$

$$v_{-1} = k_{-1} [B]$$

À l'équilibre:
$$v_1 = v_{-1}$$

$$k_1 [A]_{eq} = k_1 [B]_{eq}$$

Réactions d'équilibre

$$A \longrightarrow B$$

$$A_0 \longrightarrow K_1 \longrightarrow B_0$$

$$-\frac{d[A]}{dt} = k_1[A] - k_{-1}[B]$$

$$d[A]/dt = 0$$
Avec $[B] = [B]_0 + ([A]_0 - [A])$

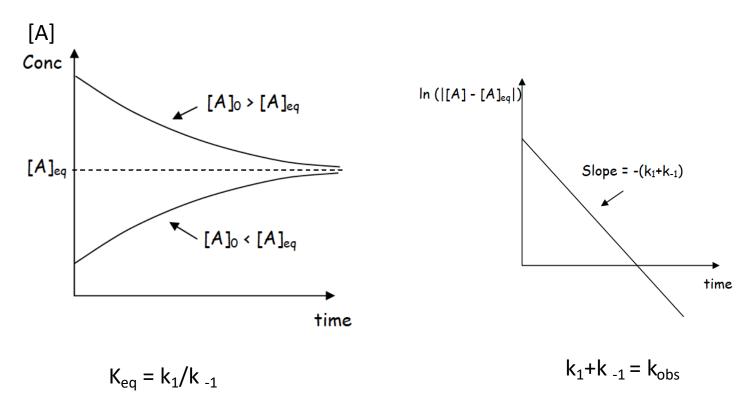
$$-\frac{d[A]}{dt} = k_1[A] - k_{-1}([B]_0 + [A]_0 - [A])$$

$$[A]_{eq} = \frac{k_{-1}}{k_1 + k_{-1}}([B]_0 + [A]_0)$$

En remarquant que $[A]_{eq}$ est une constante, on peut écrire la loi de vitesse pour [A] – $[A]_{eq}$

$$-\frac{d[A]}{dt} = -\frac{d([A] - [A]_{eq})}{dt} = (k_1 + k_{-1})([A] - [A]_{eq})$$

 $-\frac{d[A]}{dt} = -\frac{d([A] - [A]_{eq})}{dt} = (k_1 + k_{-1})([A] - [A]_{eq})$ Réaction de premier ordre avec une constante de vitesse apparente de $k_1 + k_1$


Solution

$$[A] - [A]_{eq} = ([A]_0 - [A]_{eq})e^{-(k_1 + k_{-1})t}$$

Réactions d'équilibre

$$[A] - [A]_{eq} = ([A]_0 - [A]_{eq})e^{-(k_1 + k_{-1})t}$$

Cinétique d'ordre 1

Si on obtient K_{eq} , et k_{obs} expérimentalement: on peut obtenir k_1 et k_{-1}

Modification pour une réaction de 2ème ordre: par exemple interactions récepteur/ligand

$$A + B \rightleftharpoons AB$$

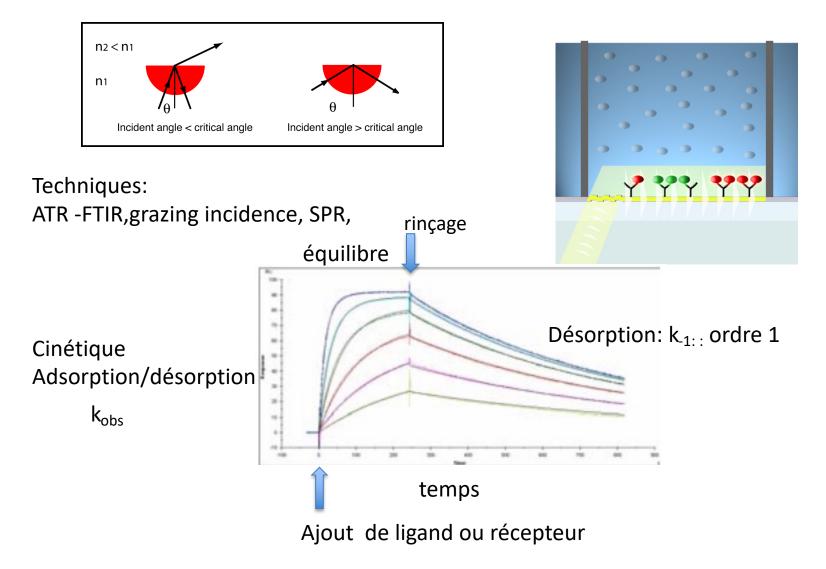
Réaction supposée élémentaire dans les deux sens

Formation du complexe $d[AB]/dt = k_a$. [A]. [B] *Compliqué dans le cas général désintégration du complexe $-d[AB]/dt = k_d$. [AB]

^{*}Généralement le substrat est en grand excès par rapport au récepteur: Cinétique de pseudo 1^{er} ordre

$$n_A A + n_B B + n_c C + \dots \rightarrow \text{Pr} \ oduits$$

But: rendre le problème similaire à un système à réactif unique


Pour
$$[A]_0 \le [B]_0$$
, $[C]_0$, etc.,

$$[B] \approx [B]_0$$
 $[C] \approx [C]_0$ etc.

$$- d[A] / dt \approx k[A]^{\alpha} [B]_{0}^{\beta} [C]_{0}^{\gamma} = k'[A]^{\alpha}$$

$$k' = k[B]_0^{\beta}[C]_0^{\gamma}$$
 Réaction de pseudo-ordre α

Des techniques expérimentales permettent de mesurer spécifiquement les molécules confinées à une surface

Réactions en plusieurs étapes

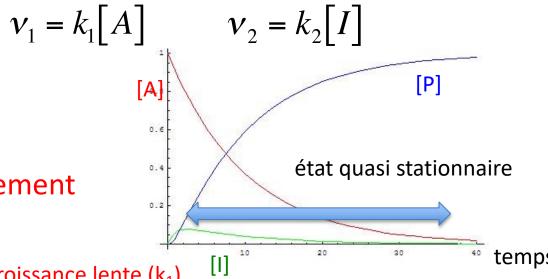
Réactions successives:
$$A \xrightarrow{k_1} I \xrightarrow{k_2} P$$

$$v_1 = k_1 [A] \qquad v_2 = k_2 [I]$$

Cas général compliqué

$$-\frac{d[A]}{dt} = v_1 = k_1[A]$$
 concentration
$$\frac{d[I]}{dt} = v_1 - v_2 = k_1[A] - k_2[I]$$

$$\frac{d[P]}{dt} = v_2 = k_2[I]$$
 [A] [I] [P] temps


hypothèse: état quasi-stationnaire

$$A \xrightarrow{k_1}$$

$$I \xrightarrow{k_2}$$

 $k_2 >> k_1$

Très peu d'intermédiaire et l'intermédiaire varie lentement

$$A(t) = A_0 e^{-k_1 t}$$
 Premier ordre : décroissance lente (k₁)

$$I(t) \approx \frac{k_1}{k_2} A(t)$$
 I petit et (après la partie initiale) décroît lentement (k₁)

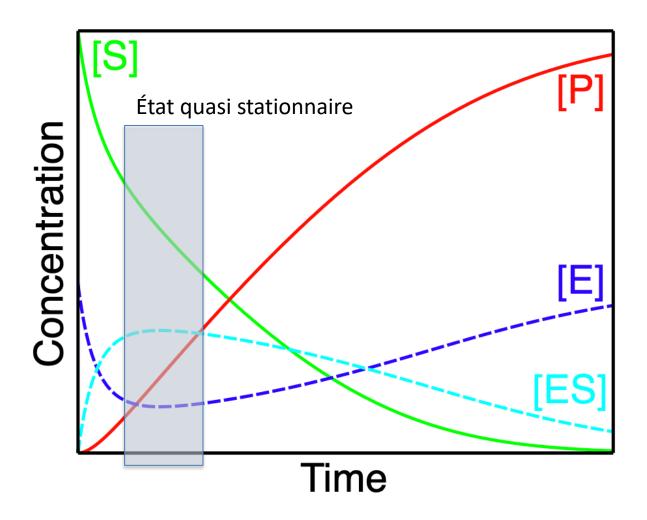
$$P(t) \approx A_0 (1 - e^{-k_1 t})$$
 Croissance lente (k₁)

$$v = \frac{d[A]}{dt} = \frac{d[P]}{dt}$$

Approximations

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} P + E$$

1) État (quasi) stationnaire (steady state):


$$k_1 [E] [S] < (k_2 + k_1) [ES]$$

La quantité de ES est faible et ne change pas beaucoup dans le temps

en pratique on mesure une vitesse approximativement constante v_o sur une période courte (< 1min). La période pre-steady state est très courte (<< 1s)

- 2) Réactions élémentaires Pas de mécanisme compliqué (coopérativité etc.), un seul substrat par enzyme
- 3) La réaction inverse P+E vers ES est généralement négligée (conditions initiales: [P]₀très faible)
- 4) La quantité d'enzyme est faible par rapport à la quantité de substrat

Evolution des concentrations dans une réaction enzymatique Suivant la loi de Michaelis Menten

Cinétique enzymatique

Réaction globale

$$E + S \xrightarrow[k_{-1}]{k_1} ES$$
 formation du complexe enzyme substrat

$$ES \xrightarrow{k_2} P + E$$
 formation des produits

Vitesse de réaction

$$v = \frac{d[P]}{dt} = k_2[ES]$$
 mais ES est un intermédiaire

Hypothèse : état stationnaire $(k_{-1} + k_2)$ [ES] > k_1 [E] [S] d[ES]/dt < 0, la concentration de ES diminue lentement

$$\frac{d[ES]}{dt} = k_1[E].[S] - k_{-1}[ES] - k_2[ES] = 0$$

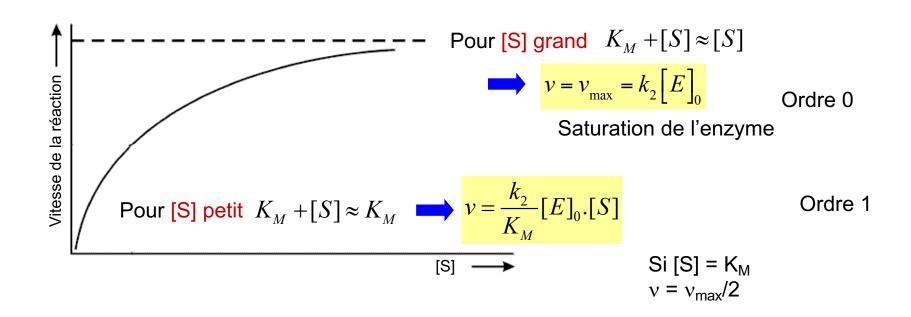
On pose
$$[E] = [E]_0$$
- $[ES]$

$$k_1[ES].[S] + k_{-1}[ES] + k_2[ES] = k_1[E]_0[S]$$

$$[ES] = \frac{k_1[E]_0[S]}{k_1[S] + k_{-1} + k_2}$$

Soit
$$K_{\rm M}$$
 constante de Michaelis $K_{\rm M} = \frac{k_{-1} + k_2}{k}$

$$[ES] = \frac{[E]_0.[S]}{K_M + [S]}$$


Relation de Michaelis - Menten

D'après les équations précédentes

$$v = \frac{d[P]}{dt} = k_2[ES] \approx \frac{k_2[E]_0.[S]}{K_M + [S]}$$

$$v \approx \frac{v_{\text{max}}.[S]}{K_M + [S]}$$
 relation de Michaelis-Menten

$$v \approx \frac{v_{\text{max}}.[S]}{K_M + [S]}$$

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

L'équation dérivée auparavant suppose que la réaction inverse (avec le constante de vitesse k_2) est négligeable Ceci est vrai lorsque P est faible

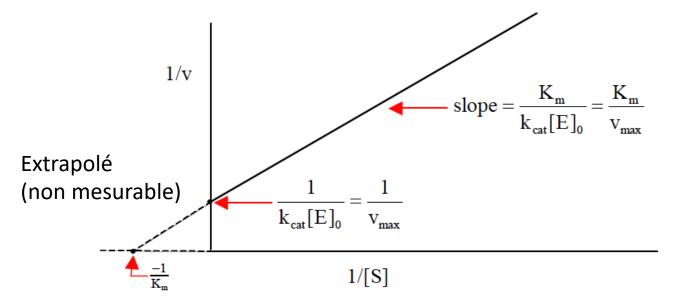
- au début de la réaction
- si P est immédiatement consommé par une réaction suivante (cycle biologique)

La formule complète est la suivante:

$$v = \frac{(v_{\text{max}} / K_M).[S] - (v'_{\text{max}} / K'_M).[P]}{1 + [S] / K_M + [P] / K'_M}$$

$$v_{\text{max}} = k_2[E]_0 \qquad K_M = \frac{k_{-1} + k_2}{k_1}$$

$$v_{\text{max}}' = k_{-1}[E]_0 \qquad K'_M = \frac{k_{-1} + k_2}{k_2}$$


En pratique, dans un test biologique, on mesure la vitesse initiale de la réaction enzymatique lorsque la concentration du complexe [ES] a atteint l'état stationnaire et la concentration de produit est encore négligeable. Si [P] tend vers 0, l'équation se réduit à sa représentation habituelle

Linéarisation:représentation Lineweaver-Burk: 1/V = f(1/[S]

$$v = \frac{k_2[E]_0.[S]}{K_M + [S]}$$
 Notation biologique $k_{cat} = k_2$
$$v_{max} = k_2[E]_0$$

$$\frac{1}{v} = \frac{[S] + K_m}{K_{\text{cat}}[E]_0[S]} = \frac{1}{k_{\text{cat}}[E]_0} + \frac{K_m}{k_{\text{cat}}[E]_0} \cdot \frac{1}{[S]}$$

On peut obtenir K_M et V_{max} à partir des points expérimentaux reportés sur le graphe suivant

Définitions

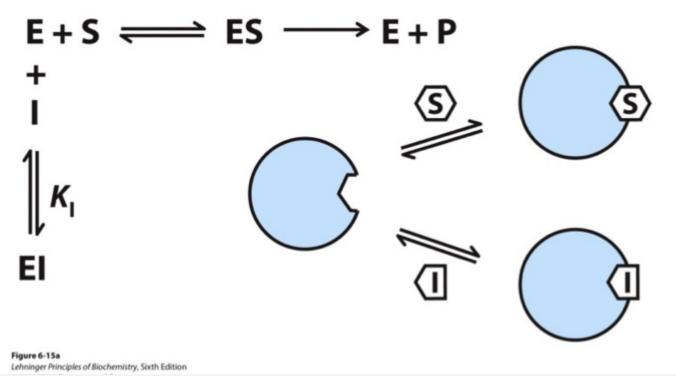
- K_M: constante de Michaelis: représente la concentration de substrat à laquelle la vitesse de réaction est égale à la moitié de la vitesse maximale. Elle est caractéristique d'une enzyme et d'un substrat dans des conditions données de température, pression, pH.
- V_{max}: vitesse maximale théorique. Elle dépend directement de la concentration de l'enzyme. Toutes les molécules d'enzyme sont liées à un substrat.
- k_{cat} : La constante catalytique (turnover) d'une enzyme est le nombre de molécules de substrat converties en produit par molécule d'enzyme par unité de temps à Vmax . Dans le mécanisme de Michaelis-Menten, $k_{cat} = k_2 = V_{max}/[E]_0$
- ε: efficacité catalytique d'une enzyme est le rapport k_{cat}/K_M.
 Lorsque l'efficacité d'une enzyme se rapproche des constantes de vitesse de diffusion de l'enzyme et du substrat (10⁸-10⁹ L mol⁻¹ s⁻¹), on parle de "perfection catalytique"

Enzymes proches de la perfection catalytique

TABLE 6-8 Enzyme	Enzymes for Which $k_{\text{cat}}/K_{\text{m}}$ Is Close to the Diffusion-Controlled Limit (10 ⁸ to 10 ⁹ M ⁻¹ s ⁻¹)				
Enzyme	Substrate	k _{cat} (s ⁻¹)	К _т (м)	$k_{\rm cat}/K_{\rm m}$ $({\rm M}^{-1}{\rm s}^{-1})$	
Acetylcholinesterase	Acetylcholine	1.4×10^4	9×10^{-5}	1.6×10^8	
Carbonic anhydrase	CO ₂ HCO ₃	$\begin{array}{c} 1\times10^6 \\ 4\times10^5 \end{array}$	1.2×10^{-2} 2.6×10^{-2}	8.3×10^{7} 1.5×10^{7}	
Catalase	H ₂ O ₂	4×10^7	1.1×10^{0}	4×10^7	
Crotonase	Crotonyl-CoA	5.7×10^3	2×10^{-5}	2.8×10^8	
Fumarase	Fumarate Malate	8×10^2 9×10^2	5×10^{-6} 2.5 \times 10 ⁻⁵	1.6×10^{8} 3.6×10^{7}	
$oldsymbol{eta}$ -Lactamase	Benzylpenicillin	$2.0 imes 10^3$	2×10^{-5}	1 × 10 ⁸	

Source: Fersht, A. (1999) Structure and Mechanism in Protein Science, p. 166, W. H. Freeman and Company, New York.

Table 6-8


Lehninger Principles of Biochemistry, Fifth Edition

© 2008 W. H. Freeman and Company

Thèmes spécifiques: SV-1 CINETIQUE

- 1. Introduction
- 2. Cinétique de réactions combinées
 - Equilibre
 - Réactions séquentielles
- 3. catalyse enzymatique: Michaelis-Menten inhibition
- 4. exemple: Anhydrase carbonique

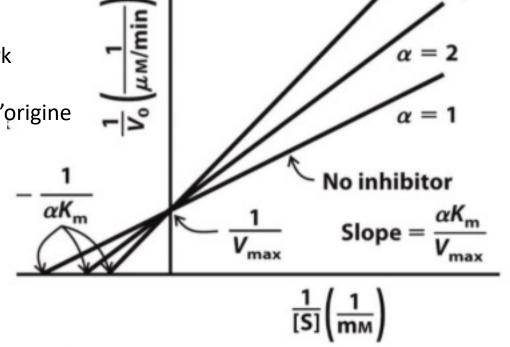
Inhibition compétitive

 $K_i = [E][I]/[EI]$ Ki: aussi appelé constante d'inhibition. Si Ki petit, l'inhibition est forte

Pas de complexe ESI, l'enzyme ne peut pas se lier en même temps au substrat S et à l'inhibiteur I

Cas le plus simple (non exclusif): l'inhibiteur et le substrat se lient au même site . Dans ce cas, il y a souvent une similarité structurelle entre l'inhibiteur et le substrat

Inhibition compétitive


Diminue la concentration active du substrat

 K_M apparent augmente V_{max} inchangé

Représentation Lineweaver-Burk Augmentation de la pente Sans variation de l'ordonnée à l'origine

$$v = \frac{v_{\text{max}}.[S]}{K_M (1 + \frac{[I]}{[K_i]}) + [S]}$$

$$v = \frac{v_{\text{max}}.[S]}{\alpha K_M + [S]}$$

Box 6-2 figure 1 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Inhibition compétitive

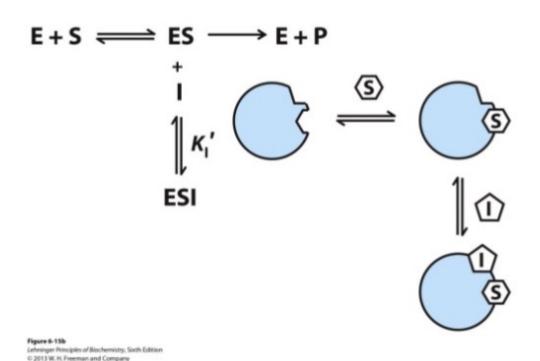
L'inhibiteur I se lie uniquement à l'enzyme et non au complexe ES.

Orthogonalité de liaison du substrat et de l'inhibiteur. Il n'y a pas de complexe ESI

Dans le cas le plus simple et le plus courant, l'inhibiteur se lie au site actif de l'enzyme et empêche la fixation du substrat

Augmentation de K_M apparent (diminue la concentration de [S] apparente)

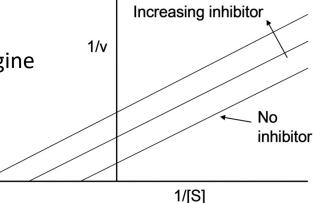
- inhibitor
- no inhibitor
Slope: change
Y-intercept: same


Augmentation de K_M apparent; aucune influence sur v_{max}

L'effet de l'inhibition est annulé aux grandes concentrations de substrat

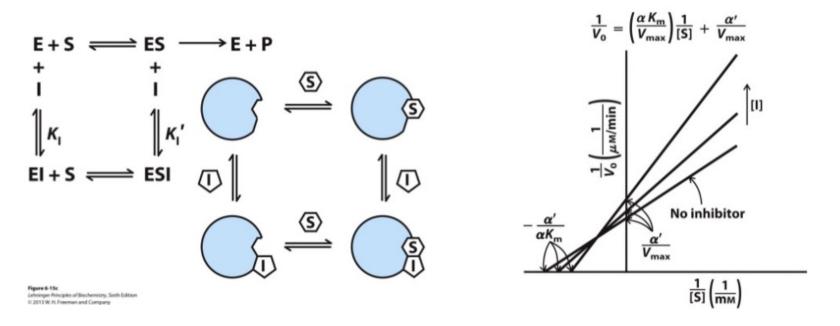
LII

Inhibition incompétitive (anticompétitive)


L'inhibiteur I se lie au complexe enzyme-substrat et bloque la réaction catalysée (k_{cat}, k₂) Les sites de liaison de l'inhibiteur et du substrat sont différents

31

Inhibition incompétitive (anticompétitive)


Dans la représentation de Lineweaver-Burk, La pente est inchangée mais l'ordonnée à l'origine augmente

 V_{max} diminue K_M diminue de la même façon (le rapport K_M / V_{max} : reste constant en présence de l'inhibiteur)

Inhibition mélangée

L'inhibiteur se lie à un site autre que le site actif et sa présence limite la capacité du substrat à se lier au site actif

L'inhibiteur se lie à la fois à l'enzyme E et au complexe ES

Variation de la pente et de l'ordonnée à l'origine

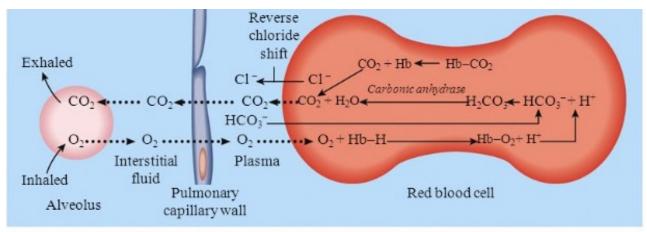
Anhydrase carbonique

Forme α

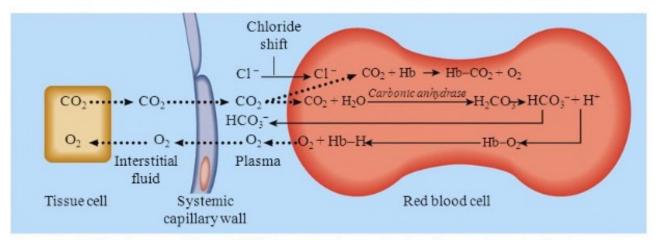
Mr: 30'000 Da

Site actif: Zn²⁺

Plusieurs formes différentes, α (mammifères), β (plantes), γ (bactéries)


Dans les globules rouges (cytosol) du sang, pancréas, membrane gastrique, reins, cerveau Et aussi en quantités plus faibles dans la salive, la rate, foie, muscles rouges

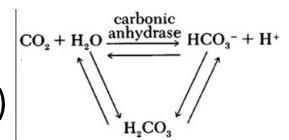
Physiologie


- 1. Transport principal du CO₂ dans le sang sous forme de HCO₃-dans erythrocytes (environ 70%), et expiration dans les poumons En cas d'hyperventilation, trop de CO₂ éliminé, le sang devient basique
- 2. En régulant la quantité de HCO₃-, CO₃²-, elle joue un rôle central dans la régulation du pH dans le sang et dans différents fluides corporels (salive neutre, sucs pancréatiques basique
- 3. Influence la forme de certains organes (œil, reins) Etc.

Calcification des coraux ou photosynthèse (CO₂ est stocké dans les plantes sous forme d'ions carbonate)

Anhydrase carbonique

(a) Exchange of O₂ and CO₂ in pulmonary capillaries (external respiration)



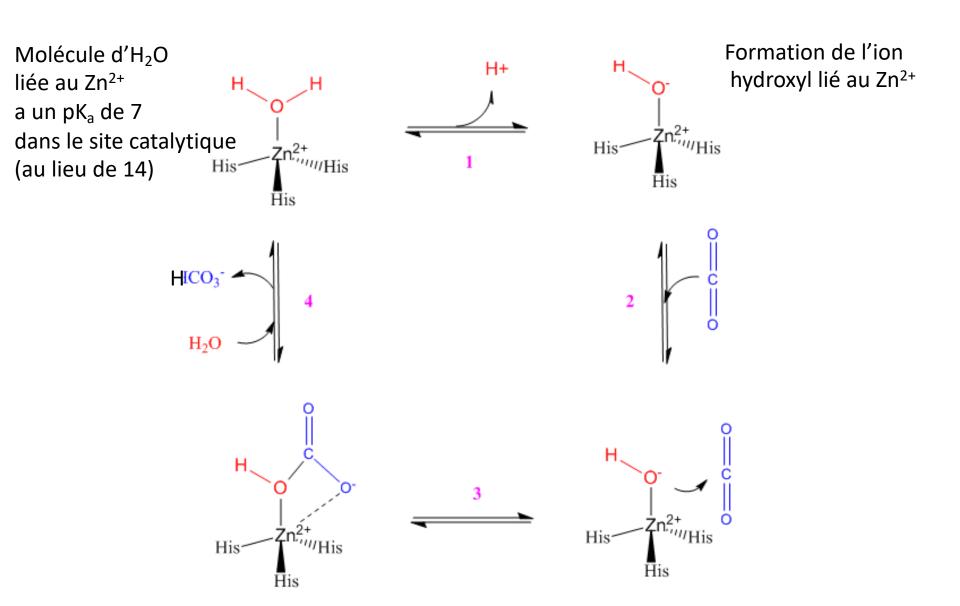
(b) Exchange of O2 and CO2 in systemic capillaries (internal respiration)

Copyright © John Wiley & Sons, Inc. All rights reserved.

Anhydrase carbonique

$$H_2O(I) + CO_2(g) \rightarrow HCO_3^-(aq) + H^+(aq)$$

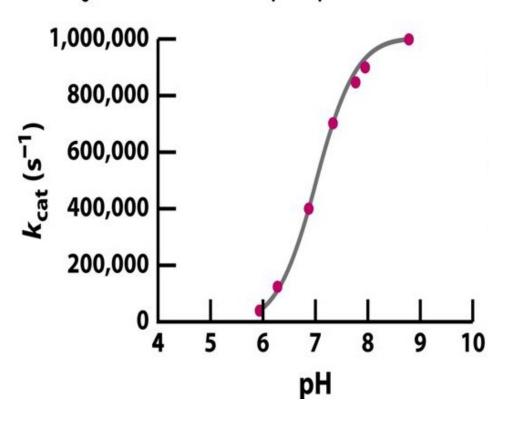
Réaction rapide sans l'enzyme (passe par le gaz carbonique H_2CO_3) Réaction ultrarapide avec l'enzyme $k_{cat} = 10^6 \text{ s}^{-1}$, $K_M = 0.012 \text{ M}$ (substrat CO_2)


$$k_{cat} / K_M = 8.3 \times 10^7 M^{-1} s^{-1}$$

Proche de la limite de diffusion de CO₂ et de l'enzyme 10⁸ M⁻¹ s⁻¹

Pour une solution de 10⁻⁶ M anhydrase carbonique

$$V_{\text{max}} = (1 \times 10^6 \text{ s}^{-1}) (1 \times 10^{-6} \text{ M}) = 1 \text{ M s}^{-1}$$
: production de 1 mol/L en 1 s

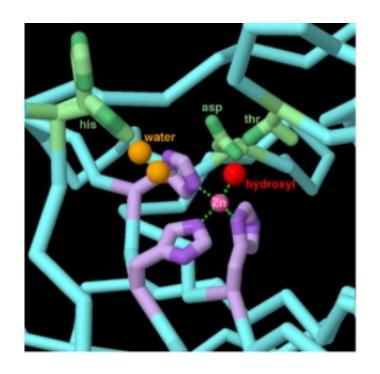

Haute concentration CO₂: équilibre déplacé de gauche à droite: dans cellules Faible concentration CO₂: équilibre déplacé de droite à gauche: poumons

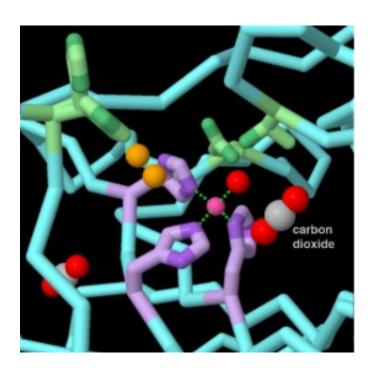
Formation et libération de HCO₃⁻ Suivi de régénération de H₂O dans le complexe Zn²⁺

Attaque nucléophile de OH- sur CO₂

Major clue from pH profile

pH optimum environ 8
diminue lorsque pH baisse

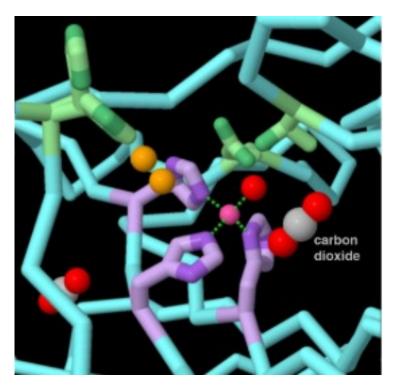

Anhydrase carbonique II


Réaction très rapide 10⁶ s⁻¹

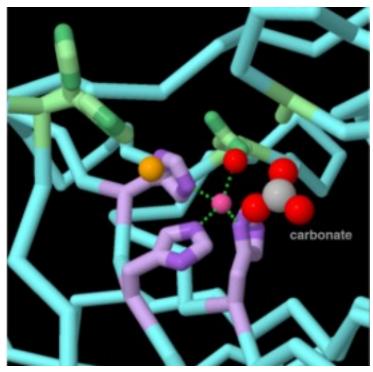
La réaction commence par la dissociation d'une molécule d'eau (liée au complexe de Zn²⁺) en OH⁻ et H⁺.

Le proton est donné au groupe Histidine (pK_a environ 7) qui le transfère ensuite à une base (ou à un système tampon) à l'extérieur de l'enzyme.

Site actif de l'Anhydrase Carbonique

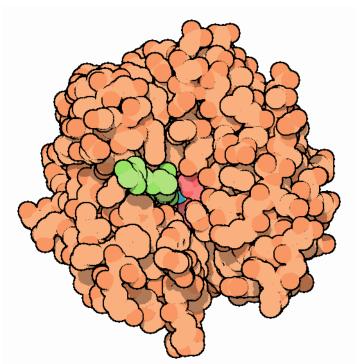


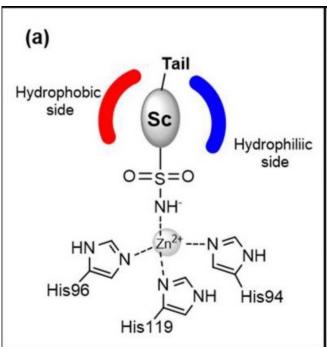
+ CO₂


Source PDB101

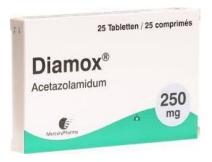
Site actif de l'Anhydrase Carbonique

+ CO₂


+ carbonate (mutant utilisé pour bloquer la réaction)



Une molécule de H₂O est transformée en hydroxyl


41

Un inhibiteur de l'anhydrase carbonique est utilisé pour le traitement du glaucome

Acetazolamide

L'inhibiteur sulfonamide (en vert) se lie à l'enzyme près du site actif et empêche les interactions entre l'eau et le Zn²⁺ et bloque ainsi l'activité de l'enzyme.

Il en résulte une baisse de la pression dans l'œil.

Aussi utilisé dans les cas d'hyperventilation dus à l'altitude (mal des montagnes).

Effet secondaire: l'usage prolongé est néfaste pour les reins.