Thermodynamique

- Introduction
- L'énergie interne
- Le premier principe de la thermodynamique
- L'enthalpie
- L'enthalpie standard de réaction
- Les deuxième et troisième principes de la thermodynamique
- L'entropie
- L'énergie de Gibbs

Ce qu'il faut savoir (thermodynamique)

- Calculer l'enthalpie standard de réaction $\Delta_r H^0$ à partir des enthalpies standard de formation des réactifs et produits, de la loi de Hess et des enthalpies de dissociation des liaisons chimiques
- Calculer l'entropie standard de réaction $\Delta_r S^0$ à partir des entropies standard des réactifs et des produits.
- Estimer le signe de $\Delta_r S^0$ en comparant le nombre de moles de gaz dans les réactifs et les produits
- Calculer l'énergie de Gibbs standard de réaction $\Delta_r G^0$ à partir des valeurs de $\Delta_f G^0$
- Calculer l'énergie de Gibbs standard de réaction $\Delta_r G^0$ à partir des valeurs de $\Delta_r H^0$ et $\Delta_r S^0$
- Savoir si une réaction est spontanée ou non aux conditions standard en considérant les valeurs de $\Delta_r G^0$
- Quantifier l'influence de la température sur la spontanéité d'une réaction

Thermodynamique classique

- développée au XIXème siècle pour étudier le rendement des machines à vapeur
- décrit les propriétés macroscopiques des systèmes à l'équilibre
- se base sur 3 (ou 4) principes et des relations mathématiques simples

Toutefois peut être assez difficile à appliquer correctement:

- jungle des conventions (signes) et des définitions
- définition rigoureuse et consistante des limites du système

Thermodynamique statistique:

interprétation moléculaire de la thermodynamique classique

Particularités de la thermodynamique chimique

- 1) On considère un nombre réduit de fonctions et on s'intéresse à leur variation lors d'une réaction chimique $\Delta_r H$, $\Delta_r S$, $\Delta_r G$ calculés à partir des valeurs tabulées $\Delta_f H^0$, S^0 , $\Delta_f G^0$ mesurées dans des conditions standard (réactifs et produits purs dans l'état standard, 1 bar, généralement à 298 K)
 - 2) interprétation moléculaire de ces fonctions (en particulier pour l'entropie) : thermodynamique statistique
- Champ d'étude de la cinétique

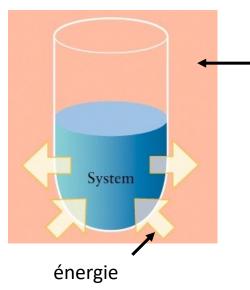
 ÉTAT DE TRANSITION

 Ea (directe)

 Réactifs

 Produits

 Champ d'étude de la thermodynamique

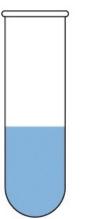

 Progression de la réaction

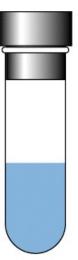
3) Ces fonctions sont des variables d'état. Leur valeur ne dépend pas du chemin parcouru mais uniquement de l'état initial et de l'état final du système

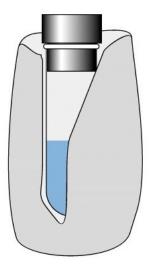
Avec l'aide de table de données thermodynamiques, on pourra, par le calcul, prévoir si une réaction est spontanée et déterminer la composition de l'équilibre. On pourra aussi savoir comment va évoluer l'équilibre si on modifie certaines conditions (température, pression)

Δ

Système, environnement, univers


environnement


Système: milieu réactionnel (chimie)


Environnement : ce qui est à l'extérieur du système

Univers : ensemble du système et de son environnement

Différents types de systèmes

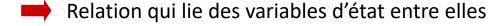
Ouvert : peut échanger de l'énergie et de la matière

Fermé: peut échanger de l'énergie mais pas de la matière

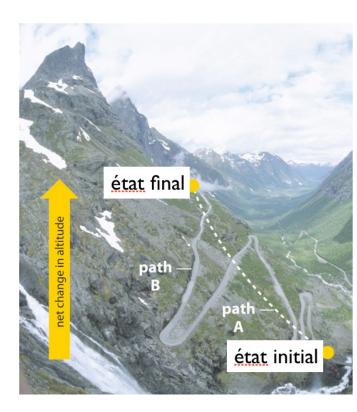
Isolé: ne peut échanger ni énergie ni matière

Quelques définitions

Fonction d'état

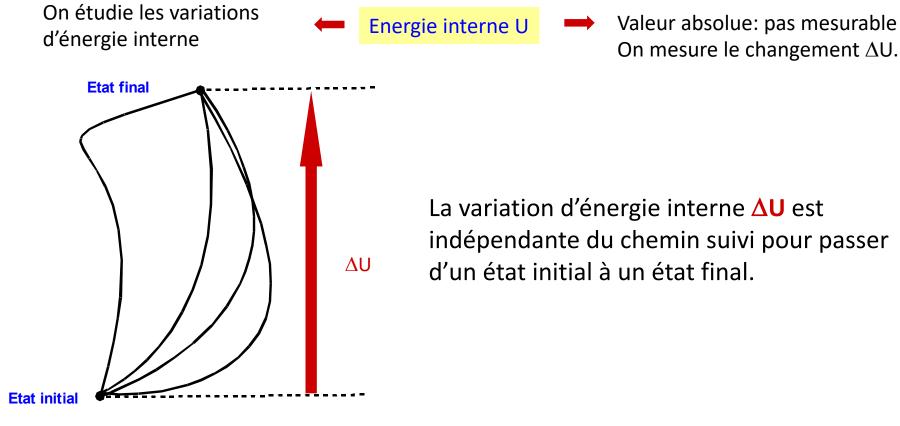

- Décrit l'état du système.
- Ne dépend que de l'état du système et est indépendante de la manière dont cet état a été atteint.

Fonctions d'état:


Altitude Énergie potentielle

Le travail fourni, le temps, la chaleur dissipée ne sont pas des fonctions d'état

Equation d'état


PV = nRT

Energie interne U

Pour une quantité donnée de substance (échantillon):

U = somme de toutes les énergies des entités élémentaires du système. C'est l'énergie intrinsèque du système (énergie potentielle et cinétique). (Ne contient pas l'énergie cinétique ou potentielle du système macroscopique)

Premier principe de la thermodynamique

Durant une transformation, la variation d'énergie interne du système est égale à la somme de la quantité de chaleur échangée avec l'environnement et du travail fourni.

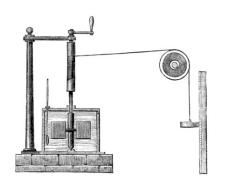
James Prescott Joule

1818-1889

variation d'énergie interne du système

 $\Delta U = W + O$

énergie fournie au système sous forme de chaleur (transfert d'énergie sous forme d'agitation de molécules)


énergie fournie au système sous forme de travail

L'énergie est conservée. Elle ne peut être ni créée ni détruite.

état final ΔU **Energie interne** Travail Chaleur état initial

Convention (signes):

L'énergie (sous forme de travail ou de chaleur)fournie au système est dénotée positivement

Appareil pour mesurer la quantité de chaleur associée à un travail mécanique

Première loi de la thermodynamique

- 1. $\Delta U_{\text{système}} = Q + W$ (U est une fonction d'état mais pas Q ni W)
- ΔU ne dépend pas du chemin entre l'état initial et final contrairement à la chaleur Q et au travail W
- Chaleur fournie à un système + le travail réalisé sur un système = augmentation de l'énergie interne d'un système

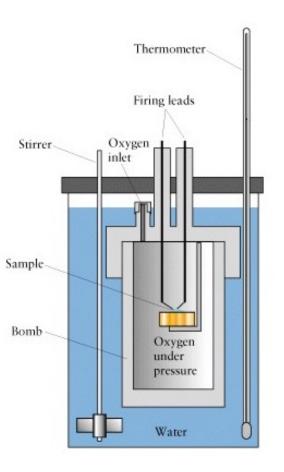
En considérant l'environnement, on peut écrire les 2 corollaires suivants:

Corollaire 1: Conservation de l'énergie

$$\Delta U_{environmement} = -Q - W$$

chaleur fournie à l'environnement par le système et le travail fait par le système sur l'environnement

Corollaire 2:


$$\Delta U_{univers} = \Delta U_{système} + \Delta U_{environnement} = 0$$

L'énergie de l'univers est constante (l'énergie interne de tout système isolé est constante)

Mesure de la variation d'énergie interne ΔU

Réaction à volume constant

 \longrightarrow Réaction isochore V = const. => W= -p \triangle V=0

Pas d'expansion du gaz contre l'atmosphère environnante:

$$\Delta V=0 \Rightarrow W=0$$

$$\Delta U = Q_v$$

CaCO₃ chauffé

On détermine la variation d'énergie interne ΔU , par simple mesure de la chaleur fournie ou absorbée par le système Q_v à volume constant

Bombe calorimétrique

l'énergie libérée sous forme de chaleur se répand dans l'eau => mesure de ΔT donne ΔU_{sys} = Q_v = $C_v \Delta T$ C_v = capacité calorifique de la bombe calorimétrique à volume constant

Energie Interne U \Leftrightarrow Enthalpie H

Les réactions chimiques sont étudiés plutôt à pression constante (1bar).

A pression constante, un travail W = $-P \cdot \Delta V$ est fourni (perdu) par le système (ce travail est compté négativement lorsque le volume augmente d'où le signe négatif).

W = $-P\Delta V$: énergie perdue par le système sous forme de travail Lorsque V augmente

Q = énergie fournie au système sous forme de chaleur

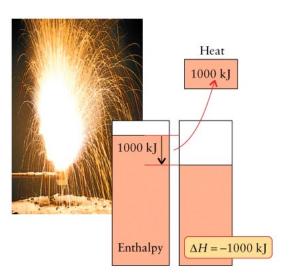
Definition de l'enthalpie H (fonction d'état)

H = U + PV (pression, volume du système)

$$\Delta H = \Delta U + P\Delta V$$
 (pour $\Delta P = 0$ $P_{ext} = P_{sys} = P$)

Avec
$$\Delta U = W + Q = -P\Delta V + Q$$
 (premier principe)
donc $\Delta H = Q_P$

La variation d'enthalpie du système ΔH est égale à la chaleur Q_P fournie au système, <u>à pression constante</u>.

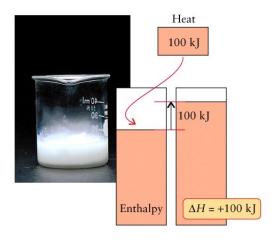

On la mesure par calorimétrie avec l'équation $\Delta H_{sys} = Q_p = C_p \Delta T$ où C_p est la capacité calorifique à pression constante

Processus exothermique

- Processus qui libère de la chaleur
- A pression constante, Processus exothermique : $\Delta_r H < 0$

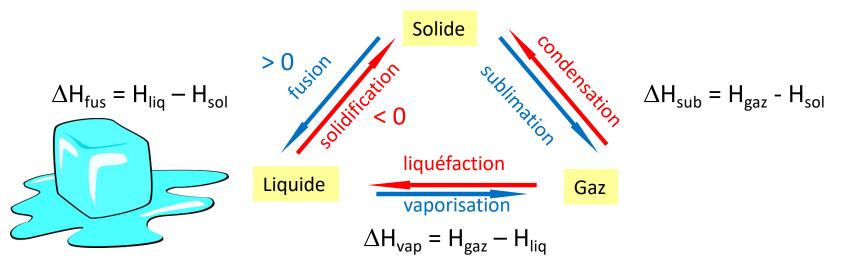
Ex: réaction de la thermite

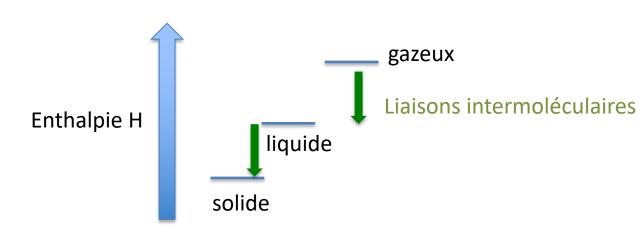
$$2Al(s) + Fe_2O_3(s) \rightarrow Al_2O_3(s) + Fe(s) + energie$$



Le dégagement de chaleur fait fondre le métal qui est produit dans la réaction

Processus endothermique


- Processus qui absorbe de la chaleur
- A pression constante, Processus endothermique : $\Delta_r H > 0$


Ex: $Ba(OH)_2 \cdot 8H_2O + 2NH_4SCN(s) \rightarrow$ $Ba(SCN)_2(aq) + 2NH_3(g) + 10H_2O(1)$

La vapeur d'eau atmosphérique est condensée en givre sur la paroi extérieure du bécher

Enthalpie des changements d'états

Pourquoi, les substances ne sont elles pas toutes sous forme solide?

Comment calculer l'enthalpie d'une réaction $\Delta_r H^0$ à partir de données thermodynamiques tabulées

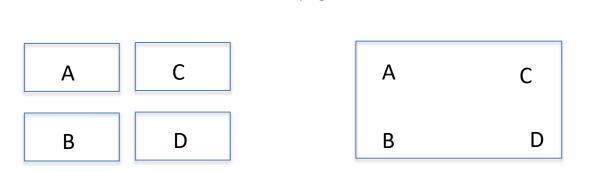
Il faut mesurer dans des conditions standardisées (1 bar, 1 mol de substance pure à une température de référence: 298 K): $\Delta_r H^0$

et définir une enthalpie de référence

- 1. Enthalpies standard de formation
- 2. Loi de Hess
- 3. Enthalpies de liaison

Conditions standard

Etat de référence: tous les réactifs et les produits sont purs (séparés):


Gaz: 1 bar (anciennement 1 atm)

Solution: 1 mol/L

Solide/liquide pur: 1 mol

État standard

La température ne fait pas partie des conditions standard mais on doit définir une température de référence (souvent 298 K en thermodynamique). Il existe un état standard pour chaque température.

réaction $A + B \rightarrow C + D$

Le mélange réactionnel n'est pas un état standard

Méthode 1:

Enthalpie standard de formation $\Delta_f H^0$ (kJ/mol)

L'enthalpie standard de formation d'un composé est la variation d'enthalpie de la <u>réaction de formation</u> d'une mole de composé à partir des éléments dans leur état de référence*.

*état de référence, c'est l'état le plus stable à une pression de 1 bar et à une température T (généralement prise à 298 K)

$$A + B + C \rightarrow substance(ABC)$$

$$\Delta_r H^0 \equiv \Delta_f H^0$$
(formation)

pour une mole ABC à 1 bar et 298 K

 $\Delta_{\rm f} {\rm H}^{\rm 0}$ est nulle pour la formation de tous les éléments dans leur état de référence.

Ex :
$$\Delta_f H^0 (N_2(g)) = 0$$

 $\Delta_f H^0 (C(s, graphite)) = 0$
 $\Delta_f H^0 (C(s, diamant)) = +1.9 \text{ kJ/mol}$
 $\Delta_f H^0 (C(s, C_{60})) = +41 \text{ kJ/mol}$

Exemple: Mesure de l'enthalpie de formation de $CO_2(g)$

On fait la réaction suivante dans un calorimètre: formation de 1 mol CO₂ (g) à partir des éléments (ici C et O dans leur état de référence)

C (graphite, s) + O₂ (g)
$$\rightarrow$$
 CO₂ (g) $\Delta_r H^0 = \Delta_f H^0$ (CO₂) = -393.5 kJ/mol

1 mole de carbone (graphite) réagit avec un excès d'oxygène gazeux (O_2) à une pression de 1 bar et une température de 298 K pour produire une mole de CO_2 à une pression de 1 bar et 298 K

Dans ce cas, la pression externe reste égale à 1 bar pendant toute la réaction. Le volume ne change pas mais la température de l'environnement (et du système) augmente pendant la réaction exothermique. Cette variation de température est mesurée dans un calorimètre à pression constante et reliée à l'enthalpie selon la relation $\Delta_r H^0 = C_p \Delta T$

Enthalpies molaires standards (P= 1 bar) de formation à 298 K

Composé chimique	(kJ/mole)
$CO_2(g)$	-393.5
$NH_3(g)$	-46.1
$CH_4(g)$	-74.6
$C_2H_6(g)$	-84.7
$C_3H_8(g)$	-103.88
$C_4H_{10}(g)$	-126.2
H(g)	218
O(g)	249.28
$O_2(g)$	0
C (graphite)	0
C (diamant)	1.92
H ₂ O (liquide)	-285.8
H_2O (gaz)	-241.8

L'enthalpie standard (molaire) de réaction $\Delta_r H^0$

Calculer l'enthalpie standard molaire de la réaction de combustion du butane, C_4H_{10} , à 298 K et 1 bar (conditions standard).

$$C_4H_{10}(g) + 6.5O_2(g) \rightarrow 4CO_2(g) + 5H_2O(1)$$

$$\Delta_r H^o = \sum_{i=1}^p v_i \Delta_f H_i^o \text{(produits)} - \sum_{j=1}^r v_j \Delta_f H_j^o \text{(réactifs)}$$

$$\Delta_{\rm r} H^{\rm o} = 4 \Delta_{\rm f} H^{\rm o} \left[{\rm CO}_2(g) \right] + 5 \Delta_{\rm f} H^{\rm o} \left[{\rm H}_2 {\rm O}(l) \right] - \Delta_{\rm f} H^{\rm o} \left[{\rm C}_4 {\rm H}_{10}(g) \right]$$

$$\Delta_r H^o = 4(-393.5) + 5(-285.8) - (-126.2) = -2876.8 \text{ kJ/mol}$$

$$\Delta_r H^o = -2876.8 \text{ kJ/mol butane}$$

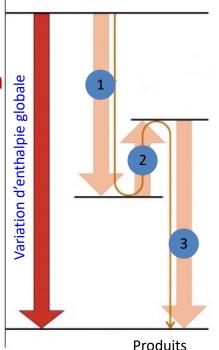
Méthode 2: Loi de Hess

 ΔH^0 : l'enthalpie est une <u>variable d'état</u> et ne dépend que des états initial (i) et final (f)

Donc le changement d'enthalpie d'une réaction est toujours le même, que la réaction se produise en une ou plusieurs étapes

$$\Delta_r H^0 = \Delta H_1^0 + \Delta H_2^0 + \Delta H_3^0 + \dots$$

Si la réaction peut être découpée en trois étapes, l'enthalpie de la réaction globale est la somme des enthalpies de réaction de ces trois étapes.


Ces étapes n'ont pas nécessairement besoin d'être réalisables au laboratoire.

 ΔH (réaction directe) = - ΔH (réaction inverse)

Germain H Hess 1802 - 1850

Enthalpie

Calcul de $\Delta_r H^0$ par la loi de Hess

Exemple

Réaction de formation de l'éthyne

$$2C(s) + H_2(g) \rightarrow C_2H_2(g)$$

Données

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(1)$$

(1)
$$\Delta_r H^0 = -2600 \text{ kJ/ } 2 \text{ mol } C_2 H_2$$

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

(2)
$$\Delta_r H^0 = -393.5 \text{ kJ/ mol}$$

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$

(3)
$$\Delta_r H^0 = -484 \text{ kJ}/ 2 \text{ mol H}_2$$

$$H_2O(1) \rightarrow H_2O(g)$$

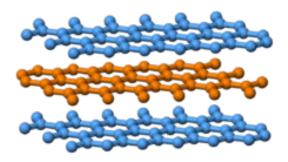
(4)
$$\Delta_r H^0 = +44.0 \text{ kJ/ mol}$$

La combinaison suivante des réactions 1 à 4 redonne la réaction de formation de l'éthyne.

$$(-1\times(1) + 4\times(2) + (3) - 2\times(4)) \div 2$$

Ce qui nous permet de calculer l'enthalpie molaire de réaction de formation de l'éthyne à partir des valeurs de $\Delta_r H^0$ de chaque réaction

$$(-1 \times (-2600) + 4 \times (-393.5) + (-484) - 2 \times (44)) \div 2 = 227 \, kJ/mol \, \acute{e}thyne$$


Méthode 3:

Calcul de $\Delta_r H^0$ à partir des enthalpies de liaisons:

méthode très simple mais moins précise

$$\Delta H_r^0 = \sum H_L(r\acute{e}actifs) - \sum H_L(produits)$$

$$2C(s) + H_2(g) \rightarrow C_2H_2(g)$$

graphite

Pour créer du C_2H_2 à partir du C(s) et $H_2(g)$ il faut:

Vaporiser deux moles $C(s) \rightarrow C(g)$: +2(717 kJ/mol)

Casser une liaison H-H: +436 kJ/mol

Former une triple liaison CEC: -812 kJ/mol

Former deux liaisons C-H: 2(-414)kJ/mol

 $\Delta_r \mathbf{H}^0 = 230 \text{ kJ/mol}$

REMARQUE: différence entre la somme des énergies des liaisons à rompre (réactifs) – somme des énergies des liaisons à faire (produits)

Enthalpie de dissociation de liaison

Liaisons simples [kJ mol⁻¹]

Toujours positive!

	Br	С	Cl	F	Н	I	N	0	P	S	Si
Br	193	285	219	249	366	178		201	264	218	330
С	285	344	328	485	414	228	286	358	264	289	307
Cl	219	328	243	255	432	211	192	206	322	271	400
F	249	485	255	158	567	280	278	191	490	327	597
Н	366	414	432	567	436	298	391	463	322	364	323
I	178	228	211	280	299	151		201	184		234
N		286	192	278	391		159	214			
0	201	358	206	191	463	201	214	143	363		466
P	264	264	322	490	322	184		363	198		
S	218	289	271	327	364					266	293
Si	330	307	400	597	323	234		466		293	226

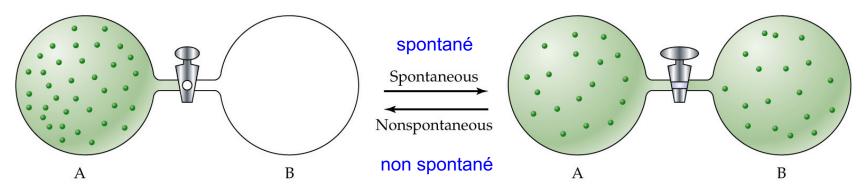
Doubles liaisons [kJ mol⁻¹]

C = C	614
C = N	615
N = N	418
O = O	464
C = O (dans CO)	1080
C = O (dans autres)	724

Triples liaisons [kJ mol⁻¹]

$C \equiv C$	812
$C \equiv N$	890
$N \equiv N$	945

Récapitulatif: thermo


- 1. Thermodynamique chimique décrite à l'aide de quelques fonctions d'état On a déjà vu l'énergie interne U et l'enthalpie H
- 2.On a vu 3 façons de calculer l'enthalpie de réaction $\Delta_r H^0$ à partir des enthalpies tabulées de formation à partir des enthalpies de réactions connues grâce à la loi de Hess à partir des enthalpies de dissociation de liaison

- 1. L'entropie S, les 2ème et 3ème principes de la thermodynamique
- 2. L'enthalpie libre ou l'énergie de Gibbs, G

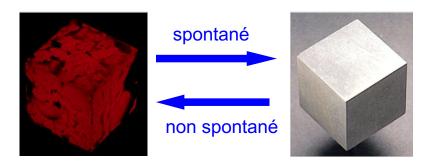
Premier principe de la thermodynamique: limitations

Direction d'une réaction spontanée

Le premier principe ne permet pas de déterminer la direction d'une réaction chimique : critères de spontanéité. D'après le premier principe, la quantité d'énergie disparue sous une forme est égale à la quantité d'énergie qui apparaît sous une autre forme : ne s'oppose pas au retour à l'état initial.

Pour un gaz parfait, U ne dépend que de la température: $\Delta U = 0 \ (\Delta H = 0)$

Le premier principe ne s'oppose pas au retour à l'état initial.


Processus spontané : a tendance à se produire sans influence extérieure continue Processus non spontané : ne se produit que s'il est provoqué

Définition thermodynamique de l'entropie S

Pour un système dans lequel une quantité de chaleur Q est échangée de manière réversible, à la température T :

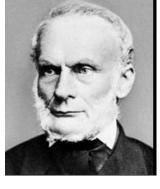
$$\Delta S = \frac{Q_{rev}}{T}$$
 en J/K

processus spontané = processus irréversible

Bloc de métal chaud se refroidit spontanément

l'énergie de ses atomes tend à se disperser dans le milieu extérieur

Evolution inverse : permise par le premier principe, mais pas réalisée dans la réalité.

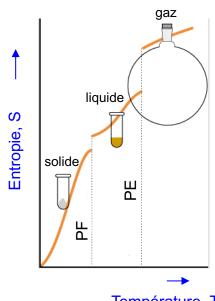

- Mesure le désordre d'un système
- Donne un critère pour la spontanéité d'un processus
- (irréversibilité du temps)

Deuxième principe de la thermodynamique

Une transformation spontanée s'accompagne d'une augmentation totale de l'entropie de l'univers (système + environnement).

$$\Delta S_{uni} = \Delta S_{syst} + \Delta S_{env}$$
 $\Delta S_{uni} > 0$ spontanée $\Delta S_{uni} = 0$ réversible (équilibre)

réversible (équilibre)

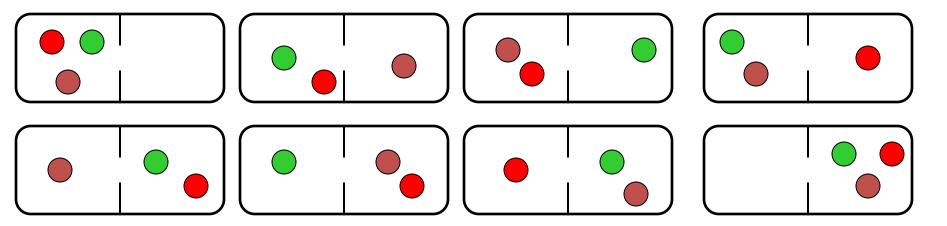

Rudolf Clausius 1822 - 1879

L'entropie d'un système isolé augmente lors d'un processus irréversible (spontané) et ne change pas lors d'un processus réversible. L'entropie d'un système isolé ne diminue jamais.

Augmentation de l'entropie d'une substance:

- par chauffage : augmentation du mouvement des molécules augmentation du désordre relatif des molécules
- espace : fournir plus d'espace pour disperser les molécules

L'entropie d'une substance augmente avec la température Et lors des transitions de phase (solide liquide et liquide, gaz)



Température, T

Définition microscopique de l'entropie

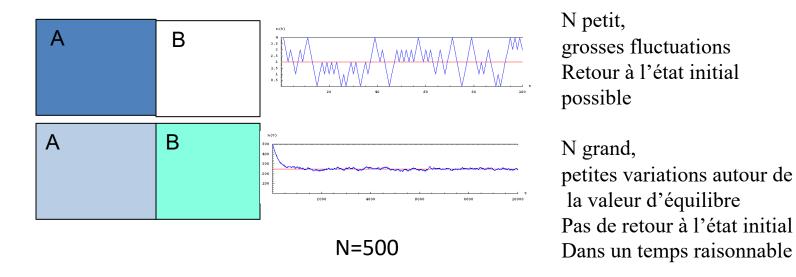
$$S = k In W$$
 $k = 1.38 10^{-23} J/K = R/N_A$

W = nombre d'états microscopiques du système

Tous les atomes à gauche: $W=1 \Rightarrow S=0$

2 atomes à gauche, 1 à droite: $W=3 \Rightarrow S > 0$

1 atomes à gauche, 2 à droite: W=3


Tous les atomes à droite: $W=1 \Rightarrow S=0$

L'entropie augmente avec le nombre d'états microscopiques (microétats).

Annexe

Définition microscopique de l'entropie

Le 2^{ème} principe a donné lieu à une confrontation entre mathématiciens et physico chimistes

Il y a 2^N micro états, et un seul avec toutes les molécules dans A (ou dans B)

Pour 1 mole de gaz, il faudrait attendre environ 2^{6.02} 10²³ s, si on suppose qu'il faille 1 s à une molécule pour passer de A à B

Âge de l'univers 15 milliards d'années: 5 1017 s

Troisième principe de la thermodynamique

L'entropie d'une substance pure, parfaitement cristalline (ordre parfait) est nulle à zéro K.

L'entropie est définie selon une échelle absolue (contrairement à l'énergie interne et à l'enthalpie)

$$S = k In W$$

 $S = 0 Iorsque W = 1$

$$k = 1.38 \ 10^{-23} \ J/K = R/N_A$$

constante de Boltzmann

Ludwig Boltzmann 1844-1906

R: constante des gaz parfaits N_A: nombre d'Avogadro

Difficile à calculer pour des systèmes complexes On effectue des mesures calorimétriques (de manière réversible et à pression constante)

Soit S₂ l'entropie à la température T₂

$$S_2 = S_1 + \int_{T_1}^{T_2} \frac{dQ_{rev}}{T} = S_1 + \int_{T_1}^{T_2} \frac{dH}{T}$$

En utilisant le $3^{\text{ème}}$ principe, $S_1 = 0$ et $T_1 = 0$ et en posant $S_2 = S_T$ et $dH = C_p$ dT, on obtient la valeur de l'entropie

$$S_T = \int_0^T \frac{C_p}{T} dT$$

Les valeurs de S⁰ à 298 K et 1 bar sont généralement tabulées

Entropie standard de réaction $\Delta_r S^o$

Réactifs (R) → Produits (P)

$$\Delta_r S^0 = \sum n_P(S^0)_P - \sum n_R(S^0)_R$$

En J/(K mol), n = coefficient stoechiométrique S⁰ = entropie molaire standard

Exemple, aux conditions standard à 298 K

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$$

$$\Delta_r S^0 = S^0(H_2O(l)) - S^0(H_2(g)) - \frac{1}{2}S^0(O_2(g))$$
$$= 69.9 - 130.7 - \frac{1}{2}(205.1) = -163.3JK^{-1}mol^{-1}$$

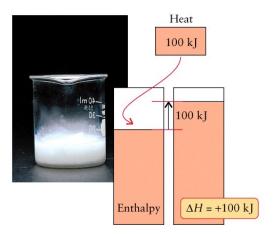
S⁰(gaz) >> S⁰(liquides, solides)

Dans une réaction, une variation du nombre de moles gazeuses prédomine, en général, sur toute autre variation d'entropie.

Entropies molaires standard (25°C)

	$S^{\circ}_{\mathbf{m}}$,
Substance	J⋅K-1⋅mol-1
GASES	_
ammonia, NH3	192.4
carbon dioxide, CO2	213.7
hydrogen, H ₂	130.7
nitrogen, N ₂	191.6
oxygen, O_2	205.1
LIQUIDS	
benzene, C ₆ H ₆	173.3
ethanol, C ₂ H ₅ OH	160.7
water, H ₂ O	69.9
SOLIDS	
calcium oxide, CaO	39.8
calcium	
carbonate, CaCO3†	92.9
diamond, C	2.4
graphite, C	5.7
lead, Pb	64.8

Processus endothermique


Processus qui absorbe de la chaleur

 $\Delta_r H > 0$ mais $\Delta_r S > 0$

A pression constante,Processus endothermique :

- On ne peut généralement pas mesurer directement la variation d'entropie lors de la réaction car le chemin n'est pas réversible.
- Ex: $Ba(OH)_2 \cdot 8H_2O + 2NH_4SCN(s) \rightarrow$
- On calcule l'entropie de réaction à partir De la différence des entropies molaires std Des produits et des réactifs

 $Ba(SCN)_2(aq) + 2NH_3(g) + 10H_2O(l)$

Réactifs: 3 moles de solide Produits:

1 mole de solide10 moles de liquide2 moles de gaz

La vapeur d'eau atmosphérique est condensée en givre sur la paroi extérieure du bécher

Le terme entropique domine et permet cette réaction

QUESTION

Déterminer la réaction dont l'entropie de réaction standard est positive

a)
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

b)
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$$

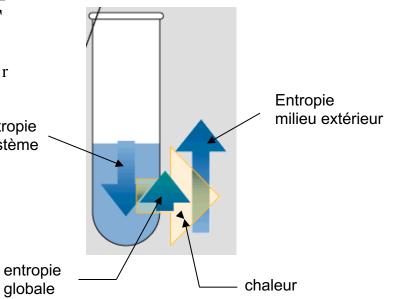
c)
$$N_2O_4(g) \rightarrow 2NO_2(g)$$

Prédiction de la spontanéité d'une réaction

Exemple

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$$

$$\begin{cases} \Delta_r H^0 = -285.8 \text{ kJ/mol} \\ \Delta_r S^0 = -163.3 \text{ J/(K mol)} \end{cases}$$


$$\Delta S_{\text{univers}} = \Delta S_{\text{système}} + \Delta S_{\text{environnement}} = \Delta S_r + \frac{Q}{T}$$

or Q= chaleur transférée à l'environnement = $-\Delta H_{\rm r}$ (pression constante)

$$\Delta S_{\text{univers}} = \Delta S_r^0 + \frac{-\Delta H_r^0}{T}$$

$$\Delta S_{\text{univers}} = -163.3J/(Kmol) + \frac{285.8kJ/mol}{298K}$$

$$= 795.8 J/(Kmol)$$

 $\Delta S_{universe} > 0$ \longrightarrow réaction spontanée aux conditions standard et à 298 K

Enthalpie libre (énergie de Gibbs): G

$$\Delta S_{\text{univers}} = \Delta S_{\text{système}} + \Delta S_{\text{environnement}} > 0$$
 réactions spontanées

Pour un système à pression et température constantes

$$P = P_{sys} = P_{ext}$$
 et $T = T_{sys} = T_{ext}$

$$\Delta S_{\text{environnement}} = \frac{-\Delta_r H}{T}$$

$$\Delta S_{\text{univers}} = \Delta_r S + \frac{-\Delta_r H}{T}$$

$$-T\Delta S_{univers} = \Delta_r H - T\Delta_r S$$

on peut calculer la variation totale d'entropie à partir de données ne concernant que le système seul.

Josiah W Gibbs 1839-1903

Définition d'une nouvelle fonction d'état: G = H - TS

Pour $\Delta T = 0$: $\Delta_r G = \Delta_r H - T \Delta_r S$ (et aux conditions standard: $\Delta_r G^0 = \Delta_r H^0 - T \Delta_r S^0$)

Processus spontané

Equilibre

$$\Delta_r G < 0$$

$$\Delta_r S + \Delta S_{\text{environnement}} > 0$$

Processus non spontané

$$\Delta_r G > C$$

$$\Delta_r G > 0$$
 $\Delta_r S + \Delta S_{\text{environnement}} < 0$

Le processus inverse est spontané

$$\Delta_r G = 0$$

$$\Delta_r G = 0$$
 $\Delta_r S + \Delta S_{\text{environnement}} = 0$

Enthalpie libre standard de formation

$$\Delta_f G^0$$
 Réactifs (R) \rightarrow Produits (P)

Enthalpie libre standard de formation, par mole de composé,

Est l'enthalpie libre de la réaction de formation de ce composé à partir des corps simples dans leur forme la plus stable aux conditions standard, 1 bar et 298 K.

L'enthalpie libre standard de formation des éléments dans leur état de référence est égale à zéro.

$$\Delta_f G^0 < 0$$
 Le composé est stable par rapport aux corps simples e.g.: $H_2O(liq)$; $\Delta_f G^0 = -237$ kJ/mol $\Delta_f G^0 > 0$ Le composé est instable par rapport aux corps simples e.g.: $C_2H_2(g)$; $\Delta_f G^0 = 209$ kJ/mol

Combinaison des enthalpies libres standard de formation dans une réaction chimique

$$\Delta_r G^0 = \sum n_P (\Delta G_f^0)_P - \sum n_R (\Delta G_f^0)_R \qquad \text{ Enthalpie libre standard de réaction}$$

En kJ/mol, n = coefficient stoechiométrique $\Delta_f G^0$ = enthalpie libre de formation dans les conditions standard $\Delta_r G^{0:}$ enthalpie libre standard de réaction décrit une réaction où les réactifs dans leur état standard sont transfomés en produits dans leur état standard)

Calcul de l'enthalpie libre de formation de $CO_2(g)$

1 mole de carbone (graphite) réagit avec un excès d'oxygène gazeux (O_2) à une pression de 1 bar et une température de 298 K pour produire une mole de CO_2 à une pression de 1 bar et 298 K

C (graphite, s) +
$$O_2$$
 (g) $\Delta_r G^0 = \Delta_f G^0$ (CO₂)
 $car \Delta_f G^0$ (C, graphite, s) et $\Delta_f G^0$ (O₂, g) = 0
 par définition.

On calcule $\Delta_r G^0$ à partir de l'équation suivante

$$\Delta_r G^0 = \Delta_r H^0 - T \Delta_r S^0$$

$$\begin{split} &\Delta_r H^0 = \Delta_f H^0 \text{ (CO}_2) = \text{-393.51 kJ/mol} \\ &\Delta_r S^0 = S^0 \text{ (CO}_2) - S^0 \text{ (C)} - S^0 \text{ (O}_2) = 2.86 \text{ J K}^{\text{-1}} \text{ mol}^{\text{-1}} \\ &\Delta_r G^0 = \text{-393.51} - (298 \text{ x } 2.86 \text{ x } 10^{\text{-3}}) = \text{-394.36 kJ/mol} \end{split}$$

Remarque:

 $\Delta_r G^0$ est une construction et ne se mesure pas directement d'un point de vue thermodynamique avec des mesures de calorimétrie. Comme on le verra plus tard, cette grandeur thermodynamique est cruciale pour les équilibres chimiques. Elle pourra ainsi être mesurée à partir des grandeurs d'équilibre.

Effet de la température sur $\Delta_r G^0$

 $\Delta_r G^0 = \Delta_r H^0 - T \Delta_r S^0$

Hypothèse: $\Delta_r H^0$, $\Delta_r S^0$ varient peu avec la température

Pour $\Delta_r S^0 > 0$ Spontanéité augmente quand la température augmente

$$\Delta_{\rm r} H^0 < 0 \qquad \Delta_{\rm r} S^0 > 0$$

Spontanée à toute température

$$\Delta_r H^0 > 0$$
 $\Delta_r S^0 > 0$

Spontanée aux températures élevées

Pour $\Delta_{\rm r} {\rm S^0} < 0$ Spontanéité diminue quand la température augmente

$$\Delta_{\text{r}} H^0 \leq 0 \qquad \Delta_{\text{r}} S^0 \leq 0$$

Spontanée aux basses températures

$$\Delta_r H^0 > 0$$
 $\Delta_r S^0 < 0$

Non spontanée à toute température

 ΔH^0

Thermodynamique en cuisine - levure chimique

$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

	NaHCO ₃ (s)	$Na_2CO_3(s)$	H₂O(g)	CO ₂ (g)
$\Delta_{\rm f} G^0 { m kJ/mol}$	-851,0	-1044,4	-228,6	-394,4
$\Delta_{ m f} { m H}^0~{ m kJ/mol}$	-950,8	-1130,7	-241,8	-393,5
S ⁰ J/(K·mol)	101,7	138,8	188,8	213,7

$$\Delta G_r^0 = \sum_{P} n_P (\Delta G_f^0)_P - \sum_{P} n_R (\Delta G_f^0)_R$$
= -1044,4 - 228,6 - 394,4 -2(-851,0) = 34,6 kJ/mol

> 0 non spontanée (aux conditions standard et à 298K)

$$\begin{split} \Delta H_{\rm r}^0 &= \sum n_{\rm P} (\Delta H_{\rm f}^0)_P - \sum n_{\rm R} (\Delta H_{\rm f}^0)_R \\ &= -1130,7 - 241,8 - 393,5 - 2(-950,8) = 135,6 \text{ kJ/mol} > 0 \text{ endothermique} \end{split}$$

$$\Delta S_r^0 = \sum n_P(S^0)_P - \sum n_R(S^0)_R = 337,9 \text{ J/(K·mol)}$$

Thermodynamique en cuisine

$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + H_2O(g) + CO_2(g)$$

A quelle température la réaction devient-elle spontanée (aux conditions standard)?

$$\Delta_r G^0 = \Delta_r H^0 - T \Delta_r S^0 = 0$$

$$T = \frac{\Delta_r H^0}{\Delta_r S^0} = \frac{135600 \ J / mol}{337,9 J / (Kmol)} = 401,3 \ K = 128,3^{\circ} C$$

