TEST FACULTATIF Z

7 NOVEMBRE 2017

Nom:	 Prénom:

Consignes importantes

- La durée globale de l'épreuve est de 60 min.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un **formulaire de 2 côtés de page A4 au maximum** et d'une **calculatrice scientifique** (non-programmable, sans aucun fichier alphanumérique stocké, ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve. Il peut être détaché pour faciliter sa consultation.
- Les étudiants non-francophones peuvent disposer d'un dictionnaire de langue ou d'un traducteur électronique dédié.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres prévus à cet effet. Au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant.
- Les réponses devront donner suffisamment d'indications pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de **brouillon ne seront pas récoltées** à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les résultats numériques devront être livrés avec leurs unités.
- Les surveillants ne répondront à aucune question relative à la donnée.
- Si au cours de l'épreuve, une erreur apparente d'énoncé ou une omission devait être repérée, on la signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

Dro	hlàm	1 0	[12	/ 36	points	1
FIU	bieii	ie i	112	/ JO	DOILIS	- 1

La combustion complète d'un mélange de butane C_4H_{10} et de butène C_4H_8 en présence d'un excès de dioxygène O_2 produit 8,80 g de dioxyde de carbone CO_2 et 4,14 g d'eau H_2O . Calculer la masse totale du mélange initial et les fractions molaires respectives $x(C_4H_{10})$ et $x(C_4H_8)$ des deux constituants dans ce mélange.

On considère la réaction d'oxydo-réduction: $2 \text{ CuBr}_2(s) \rightleftarrows 2 \text{ CuBr}(s) + \text{Br}_2(g)$

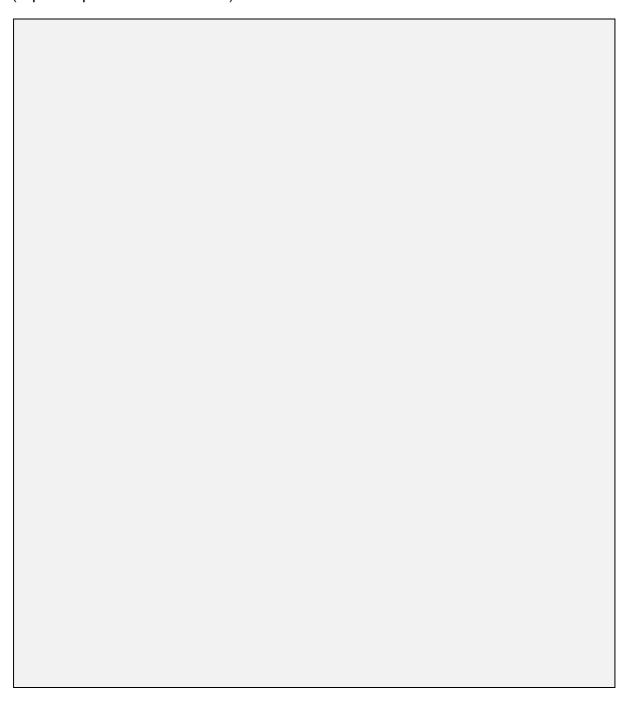
<u>Données</u> :	T = 300 K		$\Delta H_{\mathrm{f}}^{0}$ [kJ mol $^{-1}$]	$S^0 [J K^{-1} mol^{-1}]$
		$CuBr_2$ (s)	-138,78	125,8
		CuBr (s)	–104,92	91,5
		Br ₂ (g)	30,68	245,1

a)	Ecrire	l'expression	littérale du	quotient	réactionnel (Q .
u,		CAPICOSIOII	necei are da	quoticite	- cacaonnici (℃

b)	Calculer la valeur numérique de la constante d'équilibre de la réaction à $T=300~{\rm K}$ et

b) Calculer la valeur numérique de la constante d'équilibre de la réaction à T=300 K et sous une pression P=3,0 bar. Indication : Exprimer les fonctions d'états molaires standard par mole de Br_2 formé.

stan	idard par mole d	e Br ₂ formé.	•	


Problème 3 [12 / 36 points]

Le monoxyde d'azote NO réagit en présence de dibrome Br₂ selon l'équation :

$$2 \text{ NO (g)} + \text{Br}_2 (g) \rightleftharpoons 2 \text{ NOBr (g)}$$

On admet dans une enceinte fermée, préalablement vidée, un mélange des deux gaz, de sorte que la pression partielle de NO soit P(NO) = 98.4 Torr et celle de Br_2 $P(Br_2) = 41.3$ Torr à une température T = 300 K. Après réaction et établissement d'un équilibre chimique, on mesure dans l'enceinte une pression totale $P_{tot} = 110.5$ Torr à la même température.

Calculer la constante d'équilibre de la réaction et son enthalpie libre molaire standard (exprimée pour 1 mole de NOBr).

8	2 2 He itum 7 4 .00	Neon 10 Ne 20.18	Argon 18 Ar 39.95	Krypton 36 X K K K K S 83.80 3.0	Xenon Xe Xe 131.29	Radon 86 Rn (222) 2.4	
	71	Fluorine 9	Chlorine 17 CI 35.45 3.0	Bromine 35 Br 79.90 2.8	126.90	Astatine 85 At (210) 2.2	
	16	Oxygen 8 0 16.00 3.5	Sulfur 16 S 32.07 2.5	Selenium 34 34 Se 78.96 2.4	Tellurium 52 Te 127.60	Polonium 84 Po (209) 2.0	Ununhexium 116 Uuh (292)
	15	Nitrogen 7 N N N N N N N N N N N N N N N N N N	Phosphorus 15 P 30.97 2.1	Arsenic 33 AS 74.92 2.0	Antimony 51 Sb 121.76	Bismuth 83 Bi 208.98 1.9	Ununpentium 115 Uup (288)
401	4	C Carbon 6 C C 12.01 2.5	Silicon 14 Si 28.09 1.8	Germanium 32 Ge 72.61	So Sn 118.71	Pb 82 Pb 207.20	Uuq (289)
Modern Periodic Table of the Elements	55	Boron 5 10.81 2.0	Aluminum 13 AI 26.98 1.5	Gallium 31 31 Ga 69.72 1.6	Hodium 49 49 114.82 1.7	Thallium 81	Ununtrium 113 Uut (284)
Elen	#	– Avg. Mass	12	Zinc 30 Zn 65.39 1.6	Cadmium 48 Cd 112.41	80 Hg 200.59 1.9	Ununbium 112 Uub (285)
of the	- Atomic #		=	Copper 29 Cu 63.55 1.9	Ag 107.87	Gold 79 Au 196.97 2.4	Roentgenium 111 Rg (272)
o əlqı	ercury 80 ←	200.59 <	10	Nickel 28 28	Palladium 46 Pd 106.42 2.2	78 78 Pt 195.08 2.2	Ds (271)
lic Ta	Mercury 80 ⁴	200	6	Cobalt 27 Co 58.93 1.8	Rhodium 45 Rh 102.91		Meitnerium 109 Mt (266)
erioc	nt name ——Symbol —	gativity-	œ	26 Fe 55.85	Ruthenium 44 Ru 101.07 2.2		Hassium 108 HS (265)
ern P	Element name—Symbol—	, Electronegativity.	~	Mn 54.94 1.5	Technetium 43 7c (98) (1.9		Bohrium 107 Bh (262)
Mode	ӹ	Ш	9	Chromium 24 Cr Cr 52.00 1.6	Molybdenum 42 Mo 95.94 1.8	Tungsten 74 W 183.84	Sg (263)
The	nasses ounded aces. es are to	ssured ubject to rules. Do urther	ĸ	23 24 V 50.94 1.6	Nioblum 41 Nb 92.91	Tantalum 73 73 Ta 180.95 1.5	Dubnium 105 Db (262)
	Average relative masses are 2001 values, rounded to two decimal places. All average masses are to	be treated as measured quantities, and subject to significant figure rules. Do not round them further when performing calculations.	4	Titanium 22 22 Ti 47.88 47.88	Zirconium 40 2	Hafnium 72 Hf 178.49 1.3	Rutherfordium 104 Rf (261)
	Averag are 200 to two	be treated as quantities, a significant fi not round th when perfor calculations.	ო	Scandium 21 SC 8C 44.96 1.3	**************************************	Lutetium 71 Lu 174.97 1.1	Lawrencium 103 Lr (262)
			I			57-70	89-102
	8	Beryllium 4 4 Be 9.01	Mgg 24.31	Calcium 20 Ca 40.08 1.0	Strontium 38 Sr 87.62 1.0	Barium 56 Ba 137.33 0.9	Radium 88 88 (226) 0.9
-	Hydrogen	Lithium 3 3 Li 6.94 1.0	Sodium 11 11 22.99 0.9	Potassium 19 K	Rubidium 37 Rb 85.47 0.8	Cestum 55 CS CS 132.91	Francium 87 Fr (223) 0.7

*lanthanides	Lanthanum 57 La 138.91	Certum 58 Ce 140.12	Praseodymium 59 Pr 140.91	Neodymium 60 Nd 144.24	Promethium 61 Pm (145)	Samarium 62 Sm 150.36	Europium 63 Eu 151.97	Gadolinium 64 Gd 157.25 1.2	Terbium 65 Tb 158.93	Dysprosium 66	Holmium 67 HO 172 164.93	Erbium 68 Er 167.26 1.2	Thullum 69	Ytterbium 70 Yb 173.04 173.04
**actinides	Actinium 89 89 AC (227) 1.1	Thorium 90 90 Th 232.04 1.3	Protactinium 91 Pa 231.04 1.5	Uranium 92 U 238.03	93 Np (237)	94 Pu (244)	Americium 95 Am (243)	Curium 96 Cm (247) 1.3	Berkelium 97 97 BK (247) 1.3	Salifornium 98 Cf (251) 1.3	Einsteinium 99 ES (252) 1.3	Femium 100 Fm (257)	Mendelevium 101 Md (258) 1.3	Nobelium 102 No (259) 1.3