TEST FACULTATIF X

7 NOVEMBRE **2016**

Nom:	 Prénom:

Consignes importantes

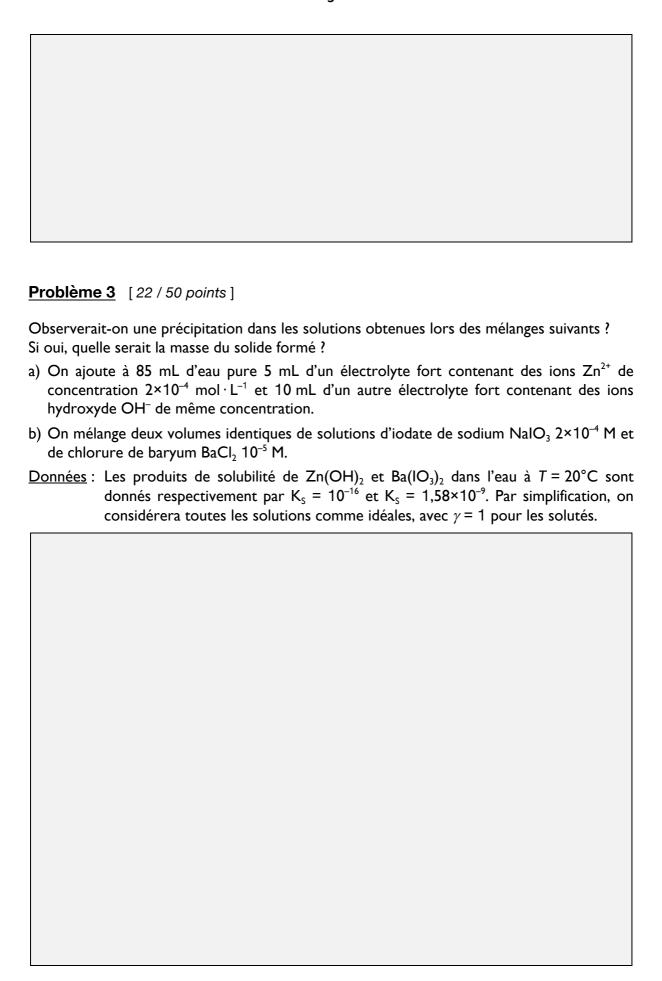
- La durée globale de l'épreuve est de **60 min**.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un **formulaire de 2 côtés de page A4 au maximum** et d'une **calculatrice scientifique** (non-programmable, sans aucun fichier alphanumérique stocké, ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve. Il peut être détaché pour faciliter sa consultation.
- Les étudiants non-francophones peuvent disposer d'un dictionnaire de langue ou d'un traducteur électronique dédié.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres prévus à cet effet. Au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant.
- Les réponses devront donner suffisamment d'indications pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de **brouillon ne seront pas récoltées** à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les résultats numériques devront être livrés avec leurs unités.
- Les surveillants ne répondront à aucune question relative à la donnée.
- Si au cours de l'épreuve, une erreur apparente d'énoncé ou une omission devait être repérée, on la signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

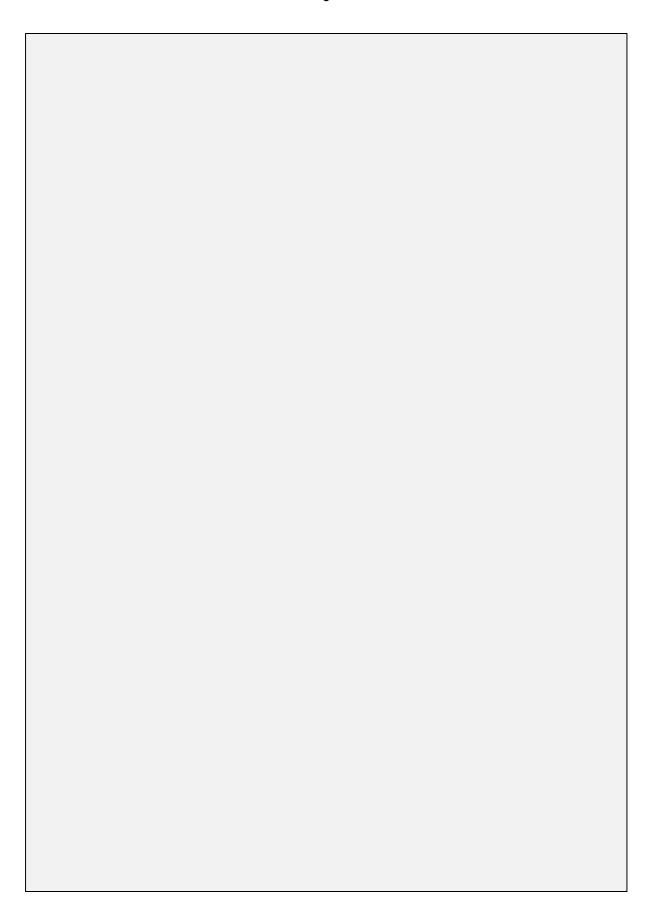
Problème 1 [10 / 50 points

L'analyse élémentaire d'un échantillon de 2,000 g de vitamine A, ne contenant que les éléments C, H, et O, est effectuée par combustion complète dans l'air. La réaction aboutit à la formation de 1,887 g d'eau et de 6,146 g de CO_2 .
a) Déterminez la formule brute de la vitamine.
b) Par une autre méthode, on a déterminé pour la masse molaire du composé une valeur $M=286,5~{\rm g\cdot mol^{-1}}$. Combien d'atomes d'oxygène contient la molécule de la vitamine A ?

Problème 2	[18 / 50 points]
------------	--------------------

La synthèse de l'ammoniac NH_3 s'opère en phase gazeuse à partir de diazote N_2 et de dihydrogène H_2 .


<u>Données</u> :	Composé	ΔH_f^0 [kJ·mol ⁻¹]	S^0 [$J \cdot mol^{-1} \cdot K^{-1}$]	T = 300 K
	N_2 (g)		191,7	
	$H_2(g)$		130,6	
	NH_3 (g)	- 48,2	192,5	


a)	Ecrire l'équation	equilibrée	de la	reaction	de	synthèse	de	NH_3 ,	exprimée	pour	une	mole
	de produit.											

١	b) Calculer la valeur de l'enthalpie molaire standard de la réaction à 300 K. La synthèse de NH_3 est-elle endo- ou exothermique dans les conditions standard à cette température ?

c)	Calculer la valeur de l'entropie molaire standard de la réaction à $T=300~{\rm K.~A}$	urait-on pu
	prédire le signe de ΔS_r^0 , et si oui comment ?	

d)) Calculer la valeur de l'enthalpie libre molaire standard de la réaction de synthèse de NH ₃ à 300 K et 500 °C. On postulera que les valeurs de ΔH_r^0 et ΔS_r^0 ne varient pratiquement pas entre ces deux températures. Que pouvez-vous dire de la spontanéité de la réaction ?
e)	Déterminer la valeur de la constante d'équilibre de la réaction de décomposition de NH ₃
	en N ₂ et H ₂ à 500 °C et sous une pression de 5 bar.
f)	Dans quelles conditions de température et de pression devrait-on mener la réaction de synthèse de NH ₃ pour optimiser la fraction molaire de l'ammoniac dans le mélange réactionnel à l'équilibre ?

Fin de l'épreuve

E 00	, _∞	٠ ي	3.0	2.6	2.4	
				Xenon Xenon 54 Xe Xe 131.29 2.6	Radon 86 RA (222) 2.2	_
17 Fluorine	19.00 4.0	Chlorine 17 CI 35.45 3.0	Bromine 35 35 Br 79.90 2.8	53 	Astatine 85 At (210) 2.2	
16 Oxygen	0 16.00 3.5	Sulfur 16 S 32.07 2.5	34 34 Se 78.96 2.4	Tellurium 52 Te 127.60	Polonium 84 Po (209) 2.0	Ununhexium 116 Uuh (292)
15 Nitrogen	N 14.01 3.0	Phosphorus 15 P 30.97	33 33 AS 74.92 2.0	Antimony 51 Sb 121.76	Bismuth 83 B3 B1 208.98 1.9	Ununpentium 115 Uup (288)
Carbon	C 12.01 2.5	Silicon 14 Si 28.09 1.8	Germanium 32 Ge 72.61	Sn 118.71	Lead 82 Pb 207.20	Ununquadium 114 Uuq (289)
. 33 Poron	. B 10.81 2.0	Aluminum 13 AI 26.98 1.5	Gallium 31 Ga 69.72 1.6	Hodium 49 In 114.82	Thallium 81 T 204.38	Ununtrilum 113 Uut (284)
#	Avg. Mass	12	Zinc 30 Zn 65.39 1.6	Cadmium 48 Cd 112.41 1.7	80 Hg 200.59	Ununbium 112 Uub (285)
. Atomic #		7	Copper 29 Cu 63.55 1.9	Silver 47 Ag 107.87	Gold 79 Au 196.97	Roentgenium 111 Rg (272)
√ Constant	200.59 ←	10	28 28 Ni 58.69 1.8	Palladium 46 Pd 106.42 2.2	78 78 Pt 195.08	Darmstadtium 110 DS (271)
Mercu80→ H_Q	200	6	Cobalt 27 Co 58.93	Rhodium 45 Rh 102.91 2.2		Meitnerium 109 Mt (266)
nt name————————————————————————————————————	jativity_	80	Fron 26 Fe 55.85 1.8	Ruthenium 44 Ru 101.07 2.2	Osmium 76 OS 190.23 2.2	Hassium 108 HS (265)
Element name > Mercury 80 < Symbol > Ho	Electronegativity-	7	Manganese 25 Mn 54.94 1.5	Technetium 43 TC (98) 1.9	Rhenium 75 Re 186.21 1.9	Bohrium 107 Bh (262)
Ш	ŭ	9	Chromium 24 Cr Cr 52.00 1.6	Molybdenum 42 Mo 95.94 1.8	Tungsten 74 74 W 183.84 1.7	Seaborgium 106 Sg (263)
asses unded ses. s are to ured	ules. Do	2	Vanadium 23 V V 50.94 1.6	Niobium 41 Nb 92.91	Tantalum 73	105 105 Db (262)
Average relative masses are 2001 values, rounded to two decimal places. All average masses are to be treated as measured purporties and subject to	significant figure rules. Do significant figure rules. Do not round them further when performing calculations.	4	7ttanium 22 7T 47.88 1.5	Zirconium 40 40 Zr 91.22 1.4	Hafnium 72 Hf 178.49 1.3	Rutherfordium 104 Rf (261)
Average are 2001 to two de All avera be treate	significant fi not round th when perfor	ო	Scandium 21 Sc 44.96 1.3	Y 88 .91	Lutetium 71	Lawrencium 103 Lr (262)
					57-70 *	89-102 **
2 Beryllium	Be 9.01	Magnesium 12 Mg 24.31 1.2	Calcium 20 Ca 40.08 1.0	Strontium 38 SF 87.62 1.0	Barium 56 Ba 137.33	Radium 88 Ra (226) 0.9
Hydrogen 1.01 2.1 Lithium	د الله الله الله الله الله الله الله الل	Sodium 11 Na Na 22.99 0.9	19 19 K 39.10 0.8	37 37 Rb 85.47 0.8	55 55 Cs 132.91	Francium 87 Fr (223) 0.7

The Modern Periodic Table of the Elements

*lanthanides	Lanthanum 57 La 138.91	Cerium 58 Ce 140.12	Praseodymium 59 Pr 140.91	Neodymium 60 Nd 144.24	Promethium 61 Pm (145)	Samarium 62 Sm 150.36	Europium 63 Eu 151.97	Gadolinium 64 Gd 157.25 1.2	Terbium 65 Tb 158.93	Dysprosium 66 Dy 162.50 1.2	Holmium 67 Ho 164.93	Erbium 68 Er 167.26	Thulium 69	Ytterbium 70 Yb 173.04
**actinides	Actinium 89 80 AC (227) 1.1	Thorium 90 Pb	Protactinium 91 91 Pa 231.04 1.5	Uranium 92 U 238.03	Neptunium 93 Np (237)	94 94 Pu (244)	Am (243)	Curium 96 Cm (247)	Brkelium 97 BK (247)	Salifornium 98 Cf (251)	Einsteinium 999 ES (252) 1.3	Fermium 100 Fm (257) 1.3	Mandelevium 101 Md (258)	Nobelium 102 No (259) 1.3