TEST FACULTATIF W

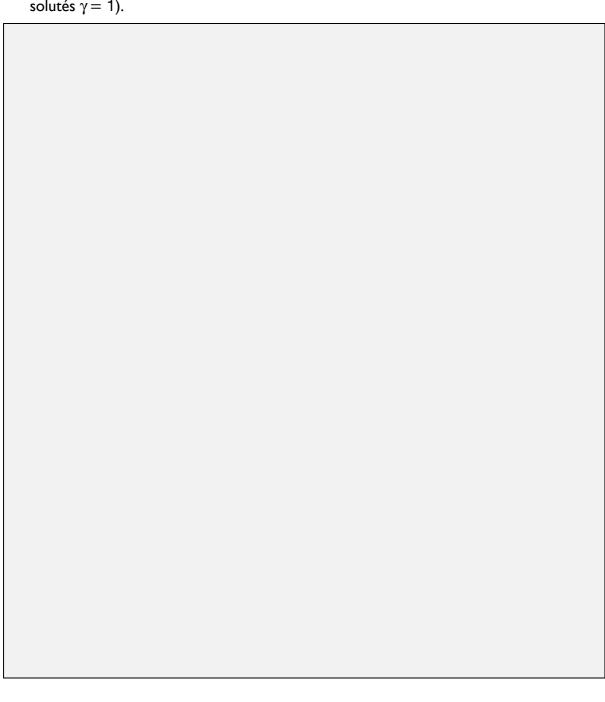
1ER DECEMBRE 2015

Nom:	Prénom:

Consignes importantes

- La durée globale de l'épreuve est de **90 min**.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un **formulaire de 2 côtés de page A4 au maximum** et d'une **calculatrice scientifique** (sans aucun fichier alphanumérique stocké ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres prévus à cet effet (au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant).
- Les réponses devront donner suffisamment d'indications pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de **brouillon ne seront pas récoltées** à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les **résultats numériques** devront être livrés avec leurs **unités**.
- Les surveillants ne répondront à aucune question relative à la donnée.
- Si au cours de l'épreuve, une erreur apparente d'énoncé ou l'omission d'une donnée devait être repérée, on le signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

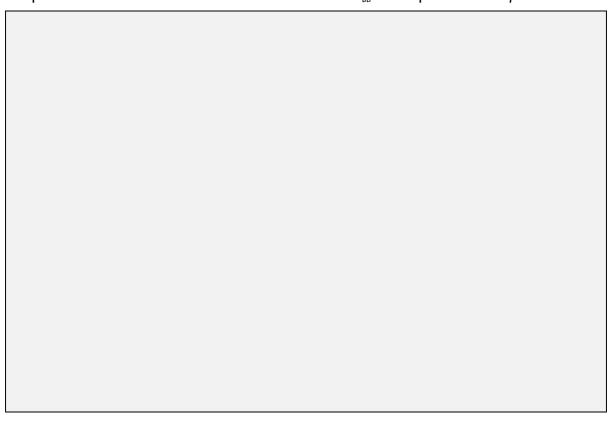
Problème 1 [13 points]

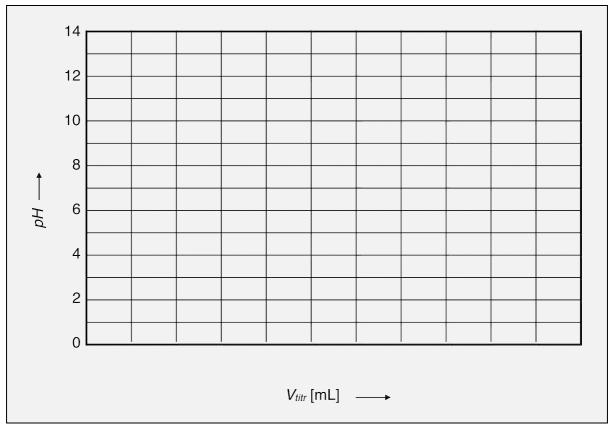

La réaction suivante prend place en solution aqueuse à T = 21°C et pH = 7:

$$2 ADP^{3-} \rightleftharpoons ATP^{4-} + AMP^{2-}$$
 (1)

a) En partant d'une solution initiale ne contenant que l'espèce ADP ³⁻ à la concentration $c_0 = 10^{-3} \text{ mol} \cdot \text{L}^{-1}$, on mesure une concentration en réactif [ADP ³⁻] = 4,5 · 10⁻⁴ M une fois l'équilibre établit.

Calculer la constante d'équilibre de la réaction (1), ainsi que la variation d'enthalpie libre standard de la réaction de l'ADP³⁻. La réaction est-elle spontanée dans le sens de la production d'ATP⁴⁻?


On postulera que la solution se comporte idéalement (coefficients d'activité de tous les solutés $\gamma = 1$).


b)	Déterminer pour la réaction (1) la valeur de d G lorsque 20% de la quantité initiale d'ADP $^{3-}$ est consommé. Dans quel sens la réaction évolue-t-elle spontanément à ce point ?
Pro	oblème 2 [39 points]
d'ui d'ad voli	prépare une solution constituée du mélange de 1,00 mL de HCl 10,0 M, de 100,0 mL ne solution aqueuse $2,00\cdot 10^{-1}$ M d'acide hypochloreux HClO (pK _a = 7,53) et de 1,15 mL cide éthanoïque CH ₃ COOH pur (acide acétique glacial liquide, pK _a = 4,75, masse umique ρ = 1,049 g·cm ⁻³). Le volume total de la solution est ajusté dans un flacon jaugé 200 mL par addition d'eau pure.
a)	On titre le mélange avec une solution de NaOH 0,500 M. Déterminer les volumes de solution titrante nécessaires pour atteindre chacun des différents points d'équivalence.

b)	Calculer le pH initial de la solution et le pH à chacun des points d'équivalence. Exprimer
	clairement les approximations éventuellement utilisées.

c) De quels autres points remarquables de la courbe de titrage peut-on disposer ? Indiquer pour chacun d'eux le volume de solution titrante V_{titr} correspondant et le pH.

d) Dessiner aussi précisément que possible la courbe de titrage en mettant en évidence les points particuliers de *pH* connu. Entourer la ou les zone(s) tampon.

Problème 3 [18 points]

Une pile électrochimique est constituée de deux compartiments. Le premier contient 100 mL d'une solution aqueuse de concentration $0,01 \text{ mol} \cdot L^{-1}$ du sel soluble de NiSO₄, dans laquelle trempe une électrode de nickel. Le second compartiment contient 80 mL d'une solution aqueuse $0,1 \text{ mol} \cdot L^{-1}$ de Pb(NO₃)₂ dans laquelle trempe une électrode de plomb.

a)	Identifier l	l'anode	et la	cathode et	calculer	la f.é.m.	de	cette	pile à	T =	= 21	°C.
			_	_			_	_				

<u>Données</u>: $E^{0}(Ni^{2+}/Ni) = -0.25 \text{ V/ SHE}$ $E^{0}(Pb^{2+}/Pb) = -0.13 \text{ V/ SHE}$ Coefficients d'activité : $\gamma(Ni^{2+}) = 0.82$; $\gamma(Pb^{2+}) = 0.17$

b)	On ajoute dans le compartiment de l'électrode de plomb 120 mL d'une solution de concentration $0,1$ mol·L ⁻¹ de Na ₂ SO ₄ . On constate la formation d'un précipité de PbSO ₄ . La f.é.m. de la pile est alors nulle. Calculer le produit de solubilité de PbSO ₄ .
	On admettra des coefficients d'activité unité (γ = 1) pour Pb ²⁺ et SO ₄ ²⁻ .

[3.0	2.6	4.2	
	4.00					Radon 86 RN (222) 2.4	
	17	Fluorine 9 F	Chlorine 17 CI 35.45 3.0	35 35 Br 79.90 2.8	53 C C C C C C C C C C	Astatine 85 At (210) 2.2	
	16	Oxygen 8 0 16.00 3.5	Sulfur 16 S 32.07 2.5	34 34 Se 78.96 2.4	Tellurium 52 Te 127.60	Polonium 84 Po (209) 2.0	Ununhexium 116 Uuh (292)
	15	Nitrogen 7 N N N N N N N N N N N N N N N N N N	Phosphorus 15 P 30.97	33 AS 74.92 2.0	Antimony 51 Sb 121.76	Bismuth 83 Bi Di 208.98 1.9	Ununpentium 115 Uup (288)
	4	Carbon 6 C C 12.01 2.5	Silicon 14 Si 28.09 1.8	Germanium 32 Ge 72.61	50 Sn 118.71	Pb 207.20	Ununquadium 114 Uuq (289)
	13	5 B 10.81	Aluminum 13 AI 26.98 1.5	Gallium 31 Ga 69.72 1.6	Hodium 49 114.82 1.7	Thallium 81	Uut (284)
	#	- Avg. Mass	12	30 30 Zn 65.39	Cadmium 48 Cd 112.41	80 80 Hg 200.59	Ununbium 112 Uub (285)
	. Atomic #	— Avg.	=	Copper 29 Cu 63.55 1.9	Ag 107.87	Godd 79 Au 196.97	Roentgenium 111 Rg (272)
		719 200.59 ← → 1.9	10	Nickel 28 Ni Ni 58 .69	Palladium 46 Pd 106.42	Platinum 78 Pt 195.08	Ds (271)
	→ Mercury 80 •	200	6	Cobalt 27 CO 58.93 1.8		Indium 77	
	1 1	gativity–	.	Leon 26 Fe 55.85 1.8	Ruthenium 44 Ru 101.07 2.2	Osmium 76 OS 190.23 2.2	Hassium 108 HS (265)
	Element name –	Electronegativity.	7	Manganese 25 Mn 54.94 1.5	Technetium 43 Tc (98) 1.9	Rhenium 75 Re 186.21 1.9	Bohrium 107 Bh (262)
i	<u>ө</u>	ũ	9	Chromium 24 Cr Cr 52.00 1.6	Molybdenum 42 Mo 95.94 1.8	Tungsten 74 W 183.84	Seaborgium 106 Sg (263)
	asses unded ses.	ured vject to Lles. Do ther	r	Vanadium 23 V V 50.94 1.6	Niobium 41 Nb 92.91	Tantalum 73	Dubnium 105 Db (262)
	Average relative masses are 2001 values, rounded to two decimal places. All average masses are to	be treated as measured quantities, and subject to significant figure rules. Do not round them further when performing calculations.	4	Titanium 22 72 Ti 47.88 1.5	Zirconium 40 Zr 91.22	Hafnium 72 Hf 178.49	Rutherfordium 104 Rf (261)
	Average are 2001 to two de All avera	be treated as quantities, ar significant fig not round the when perforn calculations.	ო	Scandium 21 SC 44.96 1.3	39 39 Y 88.91	Lutetium 71	Lawrencium 103 Lr (262)
						57-70	89-102 **
	7	Beryllium 4 Be 9.01	Mg 24.31	Calcium 20 20 Ca 40.08 1.0	Strontium 38 Sr 87.62 1.0	Barium 56 Ba 137.33 0.9	Radium 88 Ra (226) 0.9
Lideocopy	1.01	Lithium 3 2 Li 6.94 1.0	Sodium 11 Na 22.99 0.9	Potassium 19 K 39.10 0.8	Rubidium 37 Rb 85.47 0.8	Cesium 55 CS 132.91 0.7	Francium 87 Fr (223) 0.7

The Modern Periodic Table of the Elements

*lanthanides	Lanthanum 57 La 138.91	Cerium 58 Ce 140.12 1.1	Praseodymium 59 Pr 140.91	Neodymium 60 Nd 144.24	Promethium 61 Pm (145) 1.1	Samarium 62 62 Sm 150.36	Europium 63 Eu 151.97	Gadolinium 64 Gd 157.25 1.2	Terbium 65 Tb 158.93	Dysprosium 66 Dy 162.50 1.2	Holmium 67 HO 164.93	Erbium 68 Er 167.26 1.2	Thulium 69	Ytterbium 70 Yb 173.04
**actinides	Actinium 89 80 AC (227) 1.1	Thorium 90 90 Th 232.04 1.3	Protactinium 91 Pa 231.04 1.5	Uranium 92 U C 238.03 1.4	Neptunium 93 Np (237) 1.4	94 94 Pu (244)	Americium 95 95 Am (243)	Curium 96 Cm (247) 1.3	Berkelium 97 B K (247)	Californium 98 Cf (251)	Einsteinium 999 ES (252) 1.3	Fermium 100 Fm (257) 1.3	Mendelevium 101 Md (258) 1.3	Nobelium 102 No (259) 1.3