TEST FACULTATIF U

1ER DECEMBRE 2014

Nom:		Prénom:
Section:	☐ EPFL Chimie	☐ UNIL Sciences criminelles

Consignes importantes

- La durée globale de l'épreuve est de **90 min**.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un **formulaire de 2 côtés de page A4 au maximum** et d'une **calculatrice scientifique** (sans aucun fichier alphanumérique stocké ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres prévus à cet effet (au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant).
- Les réponses devront donner suffisamment d'indications pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de **brouillon ne seront pas récoltées** à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les résultats numériques devront être livrés avec leurs unités.
- Les surveillants ne répondront à aucune question relative à la donnée.
- Si au cours de l'épreuve, une erreur apparente d'énoncé ou l'omission d'une donnée devait être repérée, on le signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

Problème 1 [7 points]

Les données suivantes représentent la variation en fonction de la température de la constante d'équilibre $K_{\rm e}$ de la réaction d'autoprotolyse de l'eau.

T [°C]	10	15	20	25	30	35
pK_e	14.5346	14.3463	14.1669	13.9965	13.8330	13.6801

Déterminer l	a valeur	de l'enthalpie	e molaire	standard	de la	réaction	de c	déprotonation	de
H ₂ O en adme	ettant que	e celle-ci ne va	rie pas da	ans l'interv	alle de	e tempéra	ture.	-	

Problème 2 [19 points]

Dans un réservoir fermé de $1.0~\text{m}^3$ dans lequel on a préalablement fait le vide, on introduit 2.0~mol de CO (g), 1.0~mol de Cl₂ (g) et 17.0~mol de COCl₂ (g). A une température de 395 °C, à laquelle est maintenu le mélange de gaz, on assiste à la réaction :

$$CO(g) + Cl_2(g) \neq COCl_2(g)$$

dont la constante d'équilibre à T = 395°C vaut $K = 1.2 \cdot 10^3$.

a) Exprimer littéralement le quotient réactionnel Q et déterminer sa valeur numérique juste après le mélange des trois constituants. On admettra que tous les gaz se comportent idéalement.

b) Le système est-il initialement à l'équilibre ? Sinon, dans quel sens la réaction progressera-t-elle spontanément et quelles seront les fractions molaires des trois constituants à l'équilibre ?

Problème 3 [20 points]
Le sel de cyanate d'ammonium $(NH_4^+)(OCN^-)$ est obtenu par neutralisation de l'ammoniac par l'acide cyanique : $NH_3 + HOCN \rightarrow NH_4OCN$.
La valeur du p K_b de l'ammoniac NH_3 en solution aqueuse à une température de 25°C est 4.75. Le p K_a de l'acide cyanique HOCN dans les mêmes conditions est de 3.46.
On prépare 500 ml d'une solution de concentration $c_0 = 10^{-4}$ M de cyanate d'ammonium en dissolvant la quantité adéquate du sel dans l'eau.
 a) Ecrire les réactions d'hydrolyse des ions provenant du sel dissout et établir la liste de toutes les espèces en solution à l'équilibre.

b)	On désire calculer le plus précisément possible le pH de la solution. Etablir le système d'équations nécessaire à la résolution exacte du problème.
c)	Proposer trois approximations capables de simplifier notablement le problème et vérifier a priori leur validité à l'aide des critères généralement applicables.

d) Déterminer la valeur approximative du pH de la solution de NH₄OCN.
Problème 4 [7 points]
Déterminer la valeur numérique de la constante d'équilibre à $T = 25$ °C de la réaction :
$Cd(s) + CuSO_4(aq) \rightleftharpoons Cu(s) + CdSO_4(aq)$
Données : $T = 25$ °C $E^0(Cd^{2+}/Cd) = -0.40 \text{ V/ SHE}$; $E^0(Cu^{2+}/Cu) = +0.34 \text{ V/ SHE}$

Helium 2 He 4 .00	Neon 10		Argon 18			83.80 3.0	+		Radon 86 RD (222) 2.4	_
17	Fluorine T	19.00	Chlorine 17	35.45 3.0	Bromine 35	Br 79.90 2.8	lodine 53	1 126.90 2.5	Astatine 85 At (210) 2.2	
16	Oxygen	16.00	Sulfur 16	32.07 2.5	Selenium 34	Se 78.96 2.4	Tellurium 52	Te 127.60 2.1	Polonium 84 Po (209) 2.0	Ununhexium 116 Uuh (292)
7	Nitrogen 7	14.01	Phosphorus 15 P	30.97	Arsenic 33	As 74.92 2.0	Antimony 51	Sb 121.76 1.9	Bismuth 83 Bi Di 208.98 1.9	Ununpentium 115 Uup (288)
4	Carbon 6	12.01	Silicon 74 Si	28.09	Germanium 32	Ge 72.61 1.8	i⊨ 20	Sn 118.71	82 Pb 207.20	Ununquadium 114 Unq (289)
<u>5</u>	Boron 5	10.81	Aluminum 13 A	26.98 1.5	Gallium 31	Ga 69.72 1.6	_	In 114.82	Thallium 81 T 204.38	
#	Avg. Mass			12	Zinc 30	Zn 65.39	Cadmium 48	Cd 112.41	80 80 Hg 200.59	Ununbium 112 Uub (285)
Atomic #	— Avg.	•		7		Gu 63.55		Ag 107.87 1.9	Gold 79 AU 196.97 2.4	Roentgenium 111 Rg (272)
	* <mark>Hg</mark> 200.59 ←	1.9		10		5 8.69	_	Pd 106.42		Darmstadtium 110 DS (271)
→ Mercury 80 ◆	1	$\uparrow \uparrow$		6		5 8.93	_	Rh 102.91		
	loq	ativity_		80		Fe 55.85	+	Ru 101.07	Osmium 76 OS 190.23 2.2	Hassium 108 HS (265)
Element name	Symbol	Electronegativity.		7		Mn 54.94 1.5	+	Jc (98) (1.9	Rhenium 75 Re 186.21 1.9	Bohrium 107 Bh (262)
<u> </u>		Ele		9	Chromium 24	ي 52.00	Molybdenum 42	Mo 95.94 1.8	Tungsten 74 W 183.84	Seaborgium 106 Sg (263)
ssses nuded es.	are to ared ect to les. Do	her		S	Vanadium 23	- 9.	+	.0	Tantalum 73 Ta 180.95 1.5	Dubnium 105 Db (262)
Average relative masses are 2001 values, rounded to two decimal places.	All average masses are to be treated as measured quantities, and subject to significant figure rules. Do	not round them further when performing calculations.		4	Titanium 22	4 7.88	Zirconium 40	Zr 91.22 1.4	Hafnium 72 Hf 178.49	Rutherfordium 104 Rf (261)
Average are 2001 to two de	All average be treated quantities significan	not round them fu when performing calculations.		က	Scandium 21	Sc 44.96 1.3	Yttrium 39	≯ 88.91	Lutetium 71 Lu 174.97 1.1	Lawrencium F 103 Lr (262)
									57-70 *	89-102
2	Beryllium 4	9.01	Magnesium 12 Mg	24.31	Calcium 20	Ca 40.08	Strontium 38	Sr 87.62 1.0	Barium 56 Ba 137.33 0.9	Radium 88 Ra (226)
Hydrogen T.01	2.1 3	6.94	Sodium 11 Na	0.9	Potassium 19	39.10 0.8	Rubidium 37	Rb 85.47 0.8	Cesium 55 CS CS 132.91	Francium 87 Fr (223)

The Modern Periodic Table of the Elements

	Lanthanum 57	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
*lanthanides	Ľ	ပီ	፵	ž	Pa	Sm	ш	<u>8</u>	Q L	<u>ک</u>		ய்	Ę	Υp
	138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50		167.26	168.93	173.04
	1.	1.7	1:	1.7	7:	1.2	[-	1.2	[-	1.2		1.2	1.3	1.1
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Ferminm	Mendelevium	Nobelium
	88	90	91	92	93	94	92	96	97	86	66	100	101	102
**actinides	Ac	드	Ра	-	Š	Pu	Am	S	쓢	ర	Es	F	Βd	٥
	(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)
	-	1.3	1.5	4.1	4.1	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3