TEST FACULTATIF AE

3 DÉCEMBRE 2019

N. I	Durán ana
Nom:	Prénom :

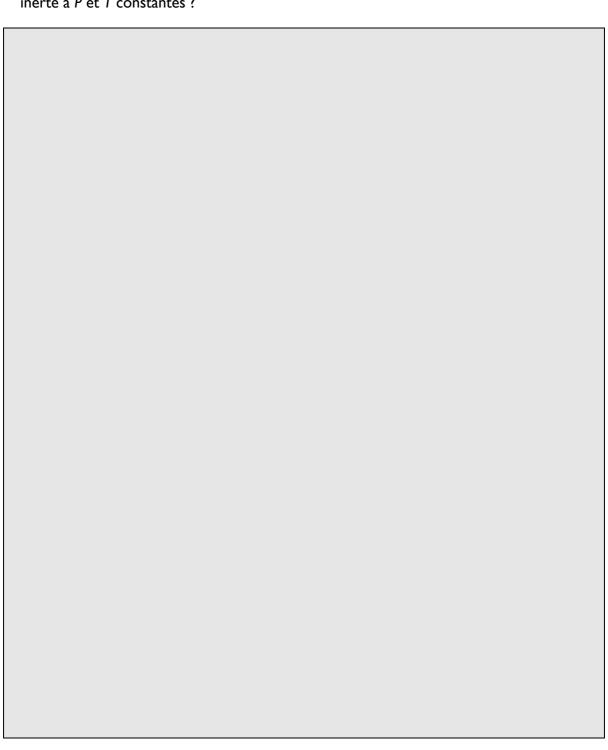
Consignes importantes

- La durée globale de l'épreuve est de 90 min.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un **formulaire de 2 côtés de page A4 au maximum** et d'une **calculatrice scientifique** (non-programmable, sans aucun fichier alphanumérique stocké, ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve. Il peut être détaché pour faciliter sa consultation.
- Les étudiants non-francophones peuvent disposer d'un dictionnaire de langue ou d'un traducteur électronique dédié.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres prévus à cet effet. Au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant.
- Les réponses devront donner suffisamment d'indications pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de **brouillon ne seront pas récoltées** à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les **résultats numériques** devront être livrés avec leurs **unités** éventuelles.
- Les surveillants ne répondront à aucune question relative à la donnée.
- Si au cours de l'épreuve, une erreur apparente d'énoncé ou une omission devait être repérée, on la signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

Problème 1 [7/46 points]

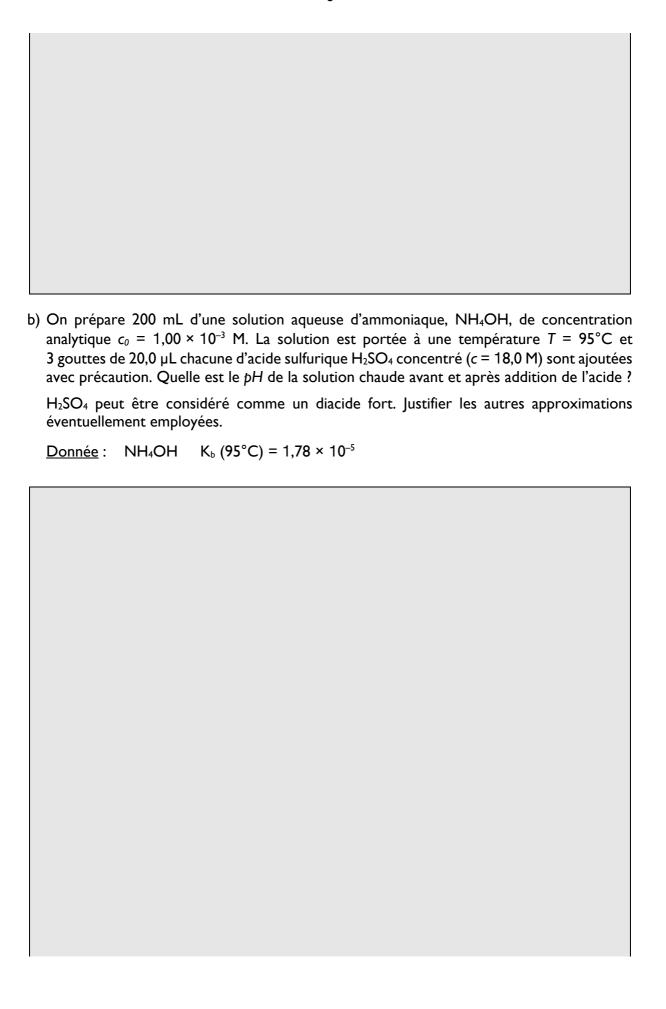
On mélange un volume $V_1 = 15,0$ mL d'une solution aqueuse (1) de nitrate de plomb, $Pb(NO_3)_2$, de concentration $c_1 = 2,00 \times 10^{-3}$ mol L^{-1} , avec un volume $V_2 = 20,0$ mL d'une solution aqueuse (2) d'iodure de potassium, KI, de concentration $c_2 = 5,00 \times 10^{-3}$ mol L^{-1} , à une température T = 22°C. $\{Pb^{2+}(NO_3^-)_2\}$ et $\{K^+I^-\}$ sont tous deux des électrolytes forts dans l'eau. Leurs solutions sont considérées comme idéales. Par contre, l'iodure de plomb, Pbl_2 , est peu soluble; son produit de solubilité à T = 22°C est $K_S = 9 \times 10^{-9}$.

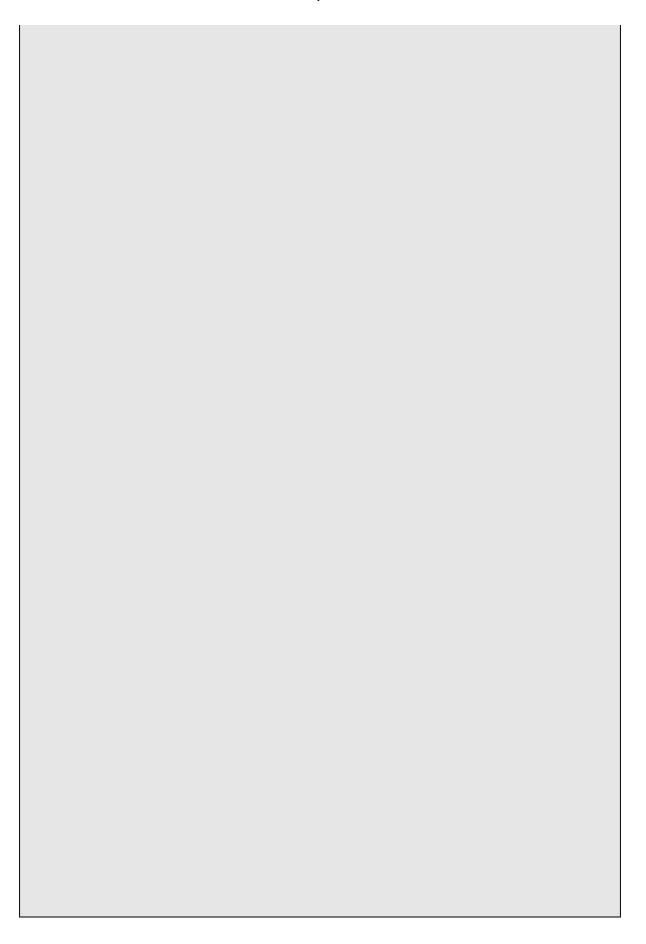
a)	Écrire l'équation ionique partielle de la réaction de précipitation de PbI_2 (s) de conditions, ainsi que l'expression littérale du produit de solubilité de PbI_2 .	ans ces
b)	Observe-t-on la précipitation de Pbl ₂ lors du mélange des solutions (1) et (2) ? quantification passerait-il si l'on ajoutait alors au mélange de l'iodure de plomb solide ?	Que se


Problème 2 [20 / 46	points]
----------------------	----------

Le triox	vde de soufre	SO₃ peut être	synthétisé à T	= 600°C par I	a réaction de	combustion:
	, ac ac soun c	. OO peacean		ooo e pai i	a reaction ac	combastion .

$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$
 (1)


L'enthalpie molaire standard de la réaction (1) à $T = 600^{\circ}$ C est $\Delta H^0 = -99,0$ kJ mol⁻¹.


a) Exprimer littéralement la constante d'équilibre K_P de la réaction. Quels seraient les effets respectifs sur l'équilibre de synthèse de SO₃ (g) de i) l'augmentation de la température, ii) l'augmentation de la pression totale, et iii) la dilution du mélange réactionnel par un gaz inerte à *P* et *T* constantes ?

b)	Soit un mélange contenant initialement n mol d' O_2 (g) et $2n$ mol de SO_2 (g). A l'équilibre on observe qu'une fraction y de la quantité initiale de SO_2 a réagi. Exprimer littéralement en fonction de n et y , le nombre total n_{total} de moles de gaz dans le mélange réactionnel à l'équilibre. Exprimer en fonction de y et de P (pression totale à l'équilibre) les pressions partielles respectives P_i des trois gaz. En déduire l'expression, puis la valeur numérique de la constante d'équilibre K_P , sachant qu'à la température $T = 600$ °C $y = 0,70$ et $P = 1,00$ bar
	The constante disequilibre K_P , sachant qualitatemperature $I = 600 \text{ C } y = 0,70 \text{ et } P = 1,00 \text{ bar}$

c) Calculer l'entropie molaire standard de la réaction (1) à $T=600^{\circ}$ C. Que peut-on dire du signe de ΔS^{0} ?
Problème 3 [19 / 46 points]
Les valeurs de l'enthalpie molaire standard de formation de H_2O (I), $H^+(aq)$ et OH^- (aq) son respectivement $-285,58$ kJ mol $^{-1}$, 0,00 kJ mol $^{-1}$ et $-229,99$ kJ mol $^{-1}$ à $T=95$ °C.
a) Calculer le pH et le pOH de l'eau pure à une température $T=95^{\circ}$ C. Pour rappel, le produi ionique de l'eau à 25° C est $K_e=9,93\times10^{-15}$.

6	Helium 2 2 He 4.00	Neon 10 Neon 20.18	Argon 18 Ar 39.95	83.80 36 30 3.0	Xenon Xe 131.29	Radon 86 Rn (222) 2.4	
	14		Chlorine 17 CI CI 35.45 3.0	Bromine 35 Br 79.90 2.8	126.90	Astatine 85 At (210) 2.2	_
	16	Oxygen 8 0 16.00 3.5	Sulfur 16 S 32.07 2.5	Selenium 34 34 Se 78.96 2.4	Tellurium 52 Te 127.60	84 Po (209) 2.0	Ununhexium 116 Uuh (292)
	15	Nitrogen 7 N N N N N N N N N N N N N N N N N N	Phosphorus 15 P 30.97 2.1	Arsenic 33 AS 74.92 2.0	Antimony 51 Sb 121.76	83 83 Bi 208.98	Ununpentium 115 Uup (288)
401	4	Carbon 6 C 12.01 2.5	Silicon 14 Si 28.09 1.8	Germanium 32 Ge 72.61	Sn 118.71	Pb 207.20	Ununquadium 114 Uuq (289)
Modern Periodic Table of the Elements	5	Boron 5 B 10.81 2.0	Aluminum 13 Al 26.98 1.5	Gallium 31 31 Ga 69.72 1.6	Hodium 49 49 114.82	81 T C C C C C C C C C C	Ununtiium 113 Uut (284)
Elen	#	- Avg. Mass	12	Zinc 30 Zn 65.39	Cadmium 48 Cd 112.41 1.7	80 80 Hg 200.59 1.9	Ununbium 112 Uub (285)
of the	- Atomic #		=	Copper 29 Cu 63.55 1.9	Ag 107.87	Gold 79 Au 196.97 2.4	
o elqu	ercury 80 ←	719 200.59 ← → 1.9	10	Nickel 28 28 Nickel 28 58.69 1.8	Palladium 46 Pd 106.42 2.2	78 78 Pt 195.08 2.2	
lic Ta	Mercury 80 <	`	6	Cobalt 27 Co 58.93 1.8	Rhodium 45 Rh 102.91	Iridium 77 F F 192.22 2.2	
erioa	nt name —	gativity-	∞	Fe 55.85	Ruthenium 44 Ru 101.07	Osmium 76 OS 190.23 2.2	Hassium 108 HS (265)
em P	Element name—	Cymbol Electronegativity-	7	Manganese 25 Mn 54.94	Technetium 43	Rhenium 75 Re 186.21 1.9	Bohrium 107 Bh (262)
Mode	Ē	ѿ	9	Chromium 24 Cf Cf 52.00 1.6	Molybdenum 42 Mo 95.94 1.8	Tungsten 74	Seaborgium 106 Sg (263)
The I	nasses ounded ces. s are to	sured bject to ules. Do rther	ĸ	23 23 V 50.94 1.6	Niobium 41 Nb 92.91	Tantalum 73 73 Ta 180.95 1.5	Dubnium 105 Db (262)
·	Average relative masses are 2001 values, rounded to two decimal places. All average masses are to	be treated as measured quantities, and subject to significant figure rules. Do not round them further when performing calculations.	4	Titanium 22 Ti 47.88	Zirconium 40 Zr 91.22 1.4	Hafnium 72 72 Hf 178.49 1.3	Rutherfordium 104 Rf (261)
	Average are 2001 to two d	be treated as quantities, a significant fi not round th when perfor calculations.	ო	Scandium 21 SC 44.96 1.3	39 39 × × × × × × × × × × × × × × × × ×	Lutetium 71 Lu 174.97 1.1	Lr (262)
						57-70 *	89-102
	8	Beryllium 4 Be 9.01	Magnesium 12 Mg 24.31 1.2	Calcium 20 Ca Ca 40.08 1.0	Strontium 38 Sr Sr 87.62 1.0	56 Ba 137.33	Radium 88 Ra (226) 0.9
-	Hydrogen 1.01	Lithium 3 Li Li 6.94 1.0	Sodium 11 Na Na 22.99	Potassium 19 K 39.10 0.8	Rubidium 37 Rb 85.47 0.8	Cestum 55 CS 132.91	Francium 87 Fr (223) 0.7

*lanthanides	Lanthanum 57 La 138.91	Cenum 58 Ce 140.12	Praseodymium 59 Pr 140.91	Neodymium 60 Nd 144.24	Promethium 61 Pm (145)	Samarium 62 Sm 150.36	Europium 63 Eu 151.97	Gadolinium 64 Gd 157.25 1.2	Terbium 65 Tb 158.93	Dysprosium 66	Holmium 67 Ho 164.93	Erbium 68 68 Er 167.26	Thulium 69 Tm 168.93	Yterbium 70 Yb 173.04 173.04
**actinides	Actinium 89 89 AC (227) 1.1	Thorium 90	Protactinium 91 Pa 231.04 1.5	Uranium 92 U 238.03	93 Np (237)	94 Pu (244)	Americium 95 95 Am (243)	Cm (247)	Brkelium 97 Bk (247)	Californium 98 Cf (251)	Einsteinium 999 ES (252) 1.3	Fermium 100 Fm (257)	Mendelevium 101 Md (258) 1.3	Nobelium 102 No (259) 1.3