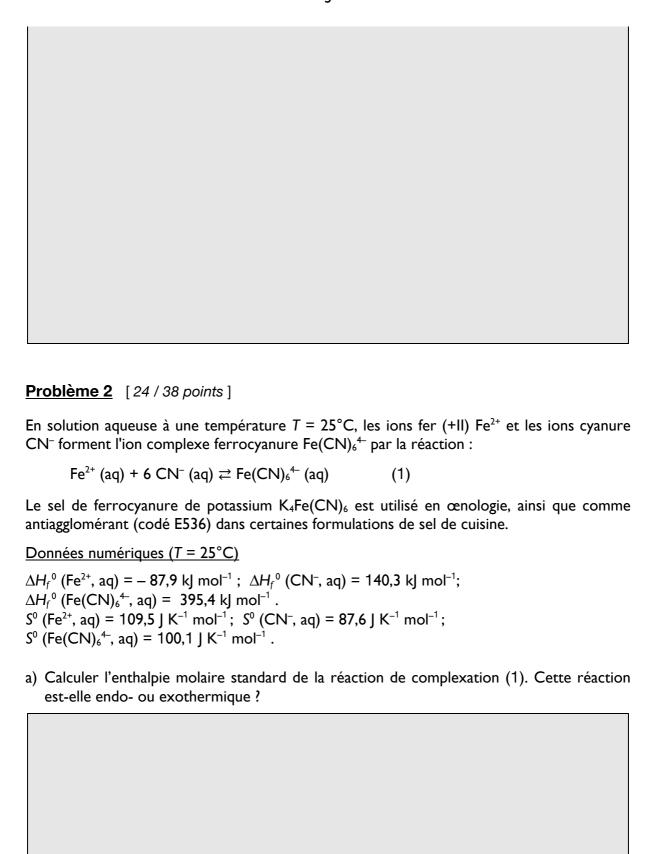
TEST FACULTATIF AD

5 NOVEMBRE **2019**

Nom :	Prénom:
NOITI.	i i ellolli .


Consignes importantes

- La durée globale de l'épreuve est de **60 min**.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un formulaire de 2 côtés de page A4 au maximum et d'une calculatrice scientifique (non-programmable, sans aucun fichier alphanumérique stocké, ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve. Il peut être détaché pour faciliter sa consultation.
- Les étudiants non-francophones peuvent disposer d'un dictionnaire de langue ou d'un traducteur électronique dédié.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres prévus à cet effet. Au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant.
- Les réponses devront donner suffisamment d'indications pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de **brouillon ne seront pas récoltées** à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les résultats numériques devront être livrés avec leurs unités.
- Les surveillants ne répondront à aucune question relative à la donnée.
- Si au cours de l'épreuve, une erreur apparente d'énoncé ou une omission devait être repérée, on la signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

Problème 1 [14 / 38	points	1
----------------------	--------	---

On procède à la combustion en présence d'un grand excès de dioxygène O_2 (g) d'un échantillon de 1,500 g d'un composé organique ne contenant que les éléments C, H, et O. Les seuls produits de la réaction sont 1,738 g de dioxyde de carbone et 0,711 g d'eau.

a) Quelle est la formule brute du compose ?
b) Un échantillon de 2,478 g du même composé organique est évaporé dans une enceinte de volume $V = 1,000$ L préalablement évacuée et portée à une température $T = 300$ °C. Or mesure alors une pression $P = 0,518$ bar de gaz dans l'enceinte. Déterminer la formule moléculaire du composé.

b)	Calculer l'entropie molaire standard de la même réaction. Comment aurait-on pu prévoir le signe de la variation de cette fonction d'état sans calcul ?
c)	Calculer l'enthalpie libre molaire standard de la réaction. Celle-ci est-elle spontanée à une température de 25 $^{\circ}$ C ?
d)	Écrire l'expression littérale du quotient réactionnel Q de la réaction (1) et déterminer la valeur numérique de sa constante d'équilibre K à $T=25^{\circ}C$.

e)	On prépare 100 mL d'une solution aqueuse obtenue en dissolvant complétement 1,4/3 g du sel $K_4Fe(CN)_6$ dans de l'eau pure. Calculer les concentrations molaires en ions Fe^{2+} . CN^- , $Fe(CN)_6^{4-}$ et K^+ présentes à l'équilibre dans la solution à $T=25$ °C, sachant que le coefficient d'activité moyen des ions dans la solution est $\gamma_{\pm}=0.76$.
	Indication: Utiliser la méthode du tableau d'avancement. Une simplification importante pourra être apportée en posant que l'ion complexe $Fe(CN)_6^4$ est si peu dissocié que sa concentration à l'équilibre est pratiquement égale à sa concentration initiale.

18	Helium 2 2 He. 4.00	Neon 10 Ne 20.18	Argon 18 Ar 39.95	Krypton 36 X Kr 83.80 3.0	Xenon Xe 131.29	Radon 86 Rn (222) 2.4	
	14	Fluorine 9 9 19.00 4.0	Chlorine 17 CI 35.45	Bromine 35 Br 79.90 2.8	126.90	Astatine 85 At (210) 2.2	
	16	Oxygen 8 0 16.00 3.5	Sulfur 16 S 32.07 2.5	Selenium 34 34 Se 78.96 2.4	Tellurium 52 Te 127.60	Potonium 84 Po (209) 2.0	Ununhexium 116 Uuh (292)
	15	Nitrogen 7 N N N N N N N N N N N N N N N N N N	Phosphorus 15 P 30.97 2.1	Arsenic 33 AS 74.92 2.0	Antimony 51 Sb 121.76	Bismuth 83 Bi 208.98 1.9	Ununpentium 115 Uup (288)
4-1	4	Carbon 6 C C 12.01	Silicon 14 0.82 28.09 1.8	Gemanium 32 Ge 72.61	Sn 118.71	Pb 82 Pb 207.20	Ununquadium 114 Uuq (289)
Modern Periodic Table of the Elements	13	Boron 5 B 10.81	Aluminum 13 AI 26.98 1.5	Gallium 31 Ga 69.72	Hindium 49 10 114.82 1.7	Thallium 81 T T 204.38	Ununtrilum 113 Uut (284)
Elen	#	— Avg. Mass	5	Zinc 30 Zn 65.39	Cadmium 48 Cd 112.41	80 80 Hg 200.59	Ununbium 112 Uub (285)
of the	- Atomic #		.	Copper 29 Cu 63.55 1.9	Silver 47 Ag 107.87	Gold 79 Au 196.97 2.4	Roentgenium 111 Rg (272)
o elq	ercury 80 ←	200.59 <	10	Nickel 28 28 Nickel 58 69 1.8	Palladium 46 Pd 106.42 2.2	Platinum 78 Pt 195.08 2.2	Ds (271)
lic Ta	→ Mercury 80 ◆	200.5	6	Cobalt 27 Co 58.93 1.8	Rhodium 45 Rh 102.91		Meitnerium 109 Mt (266)
erioa	nt name ——Symbol —	gativity-	∞	Fe 55.85	Ruthenium 44 Ru 101.07 2.2	Osmium 76 OS 190.23 2.2	Hassium 108 HS (265)
ern P	Element name——Symbol—	Electronegativity	۲	Mnnganese 25 Mn 54.94	Technetium 43		Bohrium 107 Bh (262)
Mode	ш	Ш	9	Chromium 24 Cr Cr 52.00 1.6	Molybdenum 42 42 Mo 95.94 1.8	Tungsten 74	Seaborgium 106 Sg (263)
The	nasses ounded ices.	sured bject to rules. Do rther	r.	23 V 50.94	Niobium 41	Tantalum 73 73 73 180.95 1.5	Dubnium 105 Db (262)
	Average relative masses are 2001 values, rounded to two decimal places. All average masses are to	be treated as measured quantities, and subject to significant figure rules. Do not round them further when performing calculations.	4	Titanium 22 Ti 47.88	Zirconium 40 2 Zr 91.22 1.4	Hafnium 72 72 Hf 178.49 1.3	Rutherfordium 104 Rf (261)
	Average are 2007 to two d	be treated as quantities, ar significant fig not round the when perforr calculations.	ო	Scandium 21 SC 44.96 11.3	**************************************	Lutetium 71	Lr (262)
						57-70 *	89-102
	8	Beryllium 4 4 Be 9.01	Magnesium 12 12 Mg 24.31 1.2	Calcium 20 Ca 40.08 1.0	Strontium 38 Sr 87.62 1.0	Barium 56 Ba 137.33 0.9	Radium 88 88 (226) (0.9
-	Hydrogen 1.01	Lithium 3 3 Li 6.94 1.0	Sodium 11 11 22:99 22:99 0.9	Potassium 19 K	Rubidium 37 Rb 85.47 0.8	Cestum 55 CS CS 132.91	Francium 87 Fr (223) 0.7

*lanthanides	Lanthanum 57 La	Cerium 58 Ce	Praseodymium 59	Neodymium 60	Promethium 61 Pm	Samarium 62 Sm	Europium 63 Eu	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67 Ho	68 Er bium	Thulium 69 Tm	Ytterbium 70 Yb
	138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93 1.2	167.26	168.93	1/3.04
**actinides	Actinium 89 Ac	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94 Pu	Americium 95	Curium 96 Cm	Berkelium 97 BK	Californium 98	Einsteinium 99 ES	Fermium 100 Fm	Mendelevium 101 Md	Nobelium 102 No
	(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)