TEST FACULTATIF AB

6 NOVEMBRE 2018

Nom: _		Prénom:	
--------	--	---------	--

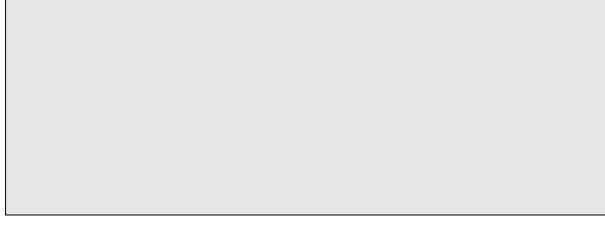
Consignes importantes

- La durée globale de l'épreuve est de 60 min.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un **formulaire de 2 côtés de page A4 au maximum** et d'une **calculatrice scientifique** (non-programmable, sans aucun fichier alphanumérique stocké, ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve. Il peut être détaché pour faciliter sa consultation.
- Les étudiants non-francophones peuvent disposer d'un dictionnaire de langue ou d'un traducteur électronique dédié.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres prévus à cet effet. Au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant.
- Les réponses devront donner suffisamment d'indications pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de **brouillon ne seront pas récoltées** à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les résultats numériques devront être livrés avec leurs unités.
- Les surveillants ne répondront à aucune question relative à la donnée.
- Si au cours de l'épreuve, une erreur apparente d'énoncé ou une omission devait être repérée, on la signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

Problème 1 [20 / 43 points]

Chauffé à 1000 K, le trioxyde de souffre SO_3 est un gaz qui se dissocie partiellement selon l'équilibre : $2 SO_3$ (g) $\rightleftharpoons 2 SO_2$ (g) + O_2 (g)

<u>Données</u> :	$T = 25^{\circ}C$		$\Delta H_{ m f}^{ m 0}$ [kJ mol $^{ m -1}$]	$S^0 [J K^{-1} mol^{-1}]$	$C_{P,m}$ [J K ⁻¹ mol ⁻¹]
	SO	₂ (g)	-296,8	2 4 8,1	39,87
	O_2	(g)		205,0	29,36
	SO	3 (g)	-395,7	256,7	50,67


a) En postulant que la capacité calorifique standard des gaz est indépendante de T, calculer la valeur de l'enthalpie molaire standard de la réaction de décomposition de SO_3 (g) à la température T = 1000 K. Cette réaction est-elle endo- ou exothermique ?

b)	En postulant par simplification que l'entropie molaire standard des gaz est indépendante de la température, calculer l'enthalpie libre molaire standard de la réaction de décomposition de SO_3 (g) à 1000 K.
c)	La réaction de décomposition de SO_3 est-elle spontanée à $T=1000$ K? A quelle température pourrait-on attendre une inversion de la spontanéité de la réaction? On postulera cette fois que l'enthalpie standard de la réaction ne varie que très faiblement avec la température sur l'intervalle considéré.
d)	Calculer la valeur numérique de la constante d'équilibre K de la réaction à $T = 1000$ K.
e)	Écrire l'expression littérale de la constante d'équilibre de la réaction en fonction des fractions molaires des différents gaz. Comment se modifie l'équilibre si on augmente la pression totale du mélange réactionnel ?

Problème 2 [23 / 43 points]

Du sulfate de calcium CaSO₄ solide est partiellement dissout dans l'eau jusqu'à formation d'une solution saturée. Dans un second récipient, on a de même du sulfate de mercure (I) Hg_2SO_4 solide en équilibre avec sa solution saturée. On postule que toutes les solutions sont idéales (coefficients d'activité de tous les ions $\gamma_i = 1$).

$CaSO_4$ (s) \rightleftarrows Ca^{2+} (aq) + SO_4^{2-} (aq)	$K_S = 2.4 \times 10^{-5}$
Hg_2SO_4 (s) \rightleftharpoons 2 Hg^+ (aq) + SO_4^{2-} (aq)	$K_S = 6.3 \times 10^{-7}$
a) Déterminer les concentrations en ions Ca ²⁺ et	SO₄²- dans le premier récipient.

- b) Déterminer les concentrations en ions Hg^+ et SO_4^{2-} dans le second récipient.
- c) On mélange les contenus des deux récipients (solutions et solides). Dans quel sens évolueront les concentrations en ions Ca²⁺ et Hg⁺ à l'équilibre ? Justifier la réponse.

d)	On désire déterminer la concentration de tous les ions en solution dans le nouveau mélange à l'équilibre. Écrire le système d'équations (sans le résoudre) dont la résolution permettrait d'obtenir les valeurs voulues.
e)	Déterminer la concentration en ions Ba^{2+} dans une solution saturée obtenue par dissolution simultanée de $CaSO_4$ (s) et $BaSO_4$ (s) dans l'eau.
	BaSO ₄ (s) \rightleftarrows Ba ²⁺ (aq) + SO ₄ ²⁻ (aq) $K_S = 1,1 \times 10^{-10}$
	$\frac{Indication}{Indication}: dans ce cas une approximation simplificatrice peut être tentée en observant que BaSO_4 est beaucoup moins soluble que CaSO_4.$

Fin de l'épreuve

18	Helium 2 2 He 4.00	Neon 10 Ne 20.18	Argon 18 Ar 39.95	Krypton 36 Kr 83.80 3.0	Xenon 54 Xe 131.29 2.6	Radon 86 Rn (222) 2.4	
	17	Fluorine 9 9 7 19.00 4.0	Chlorine 17 CI 35.45	Br 79.90 2.8	126.90	Astatine 85 At (210) 2.2	
	16	Oxygen 8	Sulfur 16 S 32.07	Setenium 34 Se 78.96 2.4	Tellurium 52 Te 127.60	Polonium 84 Po (209) 2.0	Ununhexium 116 Uuh (292)
	15	Nitrogen 7 N 14.01 3.0	Phosphorus 15 P 30.97 2.1	Asenic 33 AS 74.92 2.0	Antimony 51 Sb 121.76	83 83 Bi 208.98 1.9	Ununpentium 115 Uup (288)
401	4	C Carbon 6 C C 12.01 2.5	Silicon 14 Si 28.09 1.8	Germanium 32 Ge 72.61	So Sn 118.71	Pb 82 Pb 207.20	Uuq (289)
Modern Periodic Table of the Elements	13	Boron 5 10.81 2.0	Aluminum 13 AI 26.98 1.5	Gallium 31 Ga 69.72 1.6	Hodium 49 49 114.82 1.7	### Thallium ### 204.38	Ununtrium 113 Uut (284)
Elen	#	– Avg. Mass	12	Zinc 30 Zn 65.39	Cadmium 48 Cd 112.41		Ununbium 112 Unb (285)
of the	Atomic #		=	Copper 29 29 Cu 63.55 1.9	Silver 47 Ag 107.87	Gold 79 Au 196.97 2.4	Roentgenium 111 Rg (272)
o əlqı	ercury 80 ←	200.59 <	10	Nickel 28 28 Nickel 58 6 7 1 8	Palladium 46 Pd 106.42 2.2	78 78 Pt 195.08 2.2	Darmstadtium 110 DS (271)
lic Ta	Mercury80 ◆	200.5	ნ	Cobalt 27 Co 58.93	Rhodium 45 Rh 102.91		109 109 Mt (266)
erioc	nt name ——Symbol —	gativity-	œ	Fe 55.85	Ruthenium 44 Ru 101.07 2.2	Osmium 76 OS 190.23 2.2	Hassium 108 HS (265)
ern P	Element name — Symbol —	Electronegativity	7	Mnanganese 25 Mn 54.94	Technetium 43 7c (98) (1.9	Rhenium 75 Re 186.21 1.9	Bohrium 107 Bh (262)
Mode	ӹ	Ш	9	Chromium 24 24 Cr Cr 52.00 1.6	Molybdenum 42 Mo 95.94 1.8	Tungsten 74 W 183.84	Seaborgium 106 Sg (263)
The	nasses ounded aces. es are to	ssured lbject to rules. Do urther	ĸ	Vanadium 23	Niobium 41 Nb 92.91 1.6	Tantalum 73 73 Ta 180.95 1.5	Dubnium 105 Db (262)
	Average relative masses are 2001 values, rounded to two decimal places. All average masses are to	be treated as measured quantities, and subject to significant figure rules. Do not round them further when performing calculations.	4	Titanium 22 Ti Ti 47.88	Zirconium 40 Zr 91.22 1.42	Hafnium 72 72 Hf 178.49 1.3	Rutherfordium 104 Rf (261)
	Averag are 200 to two	be treated as quantities, ar significant fi not round the when perforr calculations.	ო	Scandium 21 SC SC 44.96 1.3	39 × × × × × × × × × × × × × × × × × × ×	Lutetium 71 Lu 174.97 1.1	Lawrencium 103 Lr (262)
			Ι			57-70	89-102
	8	Beryllium 4 4 Be 9.01	Mg 24.31	Calcium 20 20 Ca 40.08 1.0	Strontium 38 Sr 87.62 1.0	Barium 56 Ba 137.33 0.9	Radium 88 88 (226) (226) 0.9
-	Hydrogen	Lithium 3 3 Li 6.94 1.0	Sodium 11 11 22.99 0.9	Potassium 19 K X 39.10 0.8	Rubidium 37 Rb 85.47 0.8	Cesium 55 CS 132.91 0.7	Francium 87 Fr (223) 0.7

	Lanthanum 57	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
lanthanides	Гa	Se	፵	Š	Pa	Sm	Ш	Вg	T	٥	운	ш	Ē	Υp
	138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	1.	1.1	1.	1.	7:	1.2	1.	1.2	1.	1.2	1.2	1.2	1.3	1:
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Ferminm	Mendelevium	Nobelium
	88	90	91	92	93	94	92	96	97	86	66	100	101	102
*actinides	Ac	드	Ра	-	8 N	P	Am	S	쓢	ರ	Es	F	Βd	å
	(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(228)
	. .	1.3	1.5	4.1	4.	5.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3