TEST FACULTATIF AA

5 DECEMBRE 2017

Nom:	Prénom:

Consignes importantes

- La durée globale de l'épreuve est de **1h 30 min**.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un **formulaire de 2 côtés de page A4 au maximum** et d'une **calculatrice scientifique** (non-programmable, sans aucun fichier alphanumérique stocké, ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve. Il peut être détaché pour faciliter sa consultation.
- Les étudiants non-francophones peuvent disposer d'un dictionnaire de langue ou d'un traducteur électronique dédié.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres prévus à cet effet. Au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant.
- Les réponses devront donner suffisamment d'indications pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de **brouillon ne seront pas récoltées** à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les résultats numériques devront être livrés avec leurs unités.
- Les surveillants ne répondront à aucune question relative à la donnée.
- Si au cours de l'épreuve, une erreur apparente d'énoncé ou une omission devait être repérée, on la signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

Problème 1 [8/60 points]

Un échantillon de masse m=51,6 mg d'un composé biochimique neutre (non-électrolyte) et de formule brute $C_3H_7NO_3$ est dissout dans un litre d'eau pure. La pression osmotique de la solution diluée à une température $T=20,0^{\circ}C$ correspond à une colonne de 40,8 mm d'eau. Déterminer la formule moléculaire du composé et sa masse molaire.

<u>Donnée</u> : Masse volumique de l'eau à $T = 20 ^{\circ}\text{C}$: $\rho = 9,982 \times 10^2 \text{kg m}^{-3}$

Probleme 2 14/ 60 points	Problème 2	[14/ 60 points]
----------------------------	------------	-------------------

Le gaz carbonique CO₂ peut être réduit par le dihydrogène gazeux H₂ selon la réaction :

$$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(l)$$
 $\Delta S_r^{\circ} = -76.8 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

La combustion du CO en présence d'oxygène pur à pression constante $P^0=1$ bar

$$2 CO (g) + O_2 (g) \rightarrow 2 CO_2 (g)$$

dégage une quantité de chaleur équivalente à 566 kJ par mole de O₂ consommée.

a) Calculer l'enthalpie standard de la réaction de réduction du CO_2 par le dihydrogène à T = 25 °C. La réaction est-elle exothermique ou endothermique ?

 $\underline{\mathsf{Donn\acute{e}}} : \mathsf{H}_2\mathsf{O} \ (\mathsf{I}) \quad \Delta \mathsf{H}_f^{\,0} = -\ \mathsf{286} \ \mathsf{kJ} \cdot \mathsf{mol}^{-1}.$

b) Calculer l'enthalpie libre standard de la réaction de réduction du CO₂ par H₂ à 25°C. La réaction est-elle spontanée à cette température ?

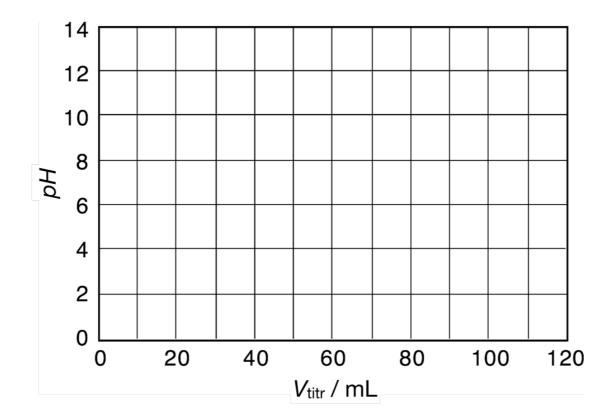
c)	Déterminez la constante d'équilibre de la réaction réversible à $T = 25$ °C.
d)	En admettant que l'enthalpie de la réaction ne varie pas avec la température, à quelle température la constante d'équilibre K sera égale à 1 ?

Problème 3 [15/ 60 points]

On agite simultanément un grand excès de PbSO₄ (s) et Ag_2SO_4 (s) dans de l'eau pure jusqu'à obtention d'une solution saturée des deux sels. Les valeurs des produits de solubilité de PbSO₄ et Ag_2SO_4 sont respectivement de $1,6 \cdot 10^{-8}$ et $1,5 \cdot 10^{-5}$. On admettra que la solution est idéale (coefficients d'activité des ions en solution = ~1).

a)	Quelles seront les concentrations des ions Pb ²⁺ et Ag ⁺ en solution ? <u>Indication</u> : Le problème peut être simplifié si on utilise le fait que le sulfate de plomb est beaucoup moins soluble que le sulfate d'argent.

b)	A la solution saturée préparée précédemment, on ajoute de l'acide sulfurique H_2SO_4 à raison d'une concentration $c_a = 1,0 \text{ mol} \cdot L^{-1}$. Que deviennent les valeurs des concentrations [Ag ⁺] et [Pb ²⁺] ? Par simplification, on considérera H_2SO_4 comme un acide fort pour ses deux dissociations et on admettra que la solution est idéale.


Problème 4 [23/ 60 points]

a)	Quel volume de gaz ammoniac NH_3 (pris à $T=25^{\circ}C$ et sous une pression $P=1$ atm) faut-il dissoudre dans 300 cm³ d'eau pour que le pH de la solution aqueuse obtenue soit égal à 10,9 ? Exprimer clairement les approximations éventuellement appliquées.
	$\underline{Donn\acute{ee}}: pK_a \left(NH_4^+\right) = 9,25.$

b)	On titre la solution obtenue en y ajoutant progressivement de petites quantités d'une solution aqueuse de concentration $c_{\text{titr}} = 0.15 \text{mol} \cdot \text{L}^{-1}$ d'acide nitrique HNO ₃ (acide fort). Quel volume de la solution d'acide nitrique correspond au point d'équivalence ?

	ons
d) Calculer le pH au point de demi-neutralisation (PDN) et le pH asymptotic correspondant à $V_{\text{titr}} \rightarrow \infty$.	que

e) Tracer sur le graphique ci-dessous la courbe de titrage aussi précisément que possible. Indiquer clairement le point de départ, le point d'équivalence (PE), le point de demineutralisation (PDN) et le pH asymptotique correspondant à $V_{\rm titr} \to \infty$ (P ∞). Encerclez la zone où un effet tampon est attendu.

8	Helium 2 2 He 4.00	Neon 10 Neon 20.18	Argon 18 Ar 39.95	Mypton 36 X Kr K 83.80 3.0	Xenon Xe Xe 131.29 2.6	Radon 86 Rn (222) 2.4	
	17	Fluorine 9 F 19.00 4.0		Brownine 35 Br 79.90 2.8	126.90 2.5	Astatine 85 At (210) 2.2	
	16	Oxygen 8 0 16.00 3.5	Suffur 16 S 32.07 2.5	Selenium 34 34 Se 78.96 2.4	Tellurium 52 Te 127.60	84 Po Po (209) 2.0	Ununhexium 116 Uuh (292)
	15	Nitrogen 7 7 N 14.01 3.0	Phosphorus 15 P 30.97 2.1	Arsenic 33 AS 74.92 2.0	Antimony 51 Sb 121.76	Bismuth 83 BJ 208.98 1.9	Ununpentium 115 Uup (288)
4-1	4	C Carbon 6 C C 12.01 2.5	Silicon 14 Si 28.09 1.8	Gemanium 32 Ge 72.61	Sn 118.71	Pb 82 Pb 207.20	Ununquadium 114 Uuq (289)
The Modern Periodic Table of the Elements	13	Boron 5 B 10.81 2.0	Aluminum 13 AI 26.98 1.5	Gallium 31 Ga 69.72 1.6	Hodium 49 49 114.82	Thallium 81 T	Ununtrilum 113 Uut (284)
Elen	#	— Avg. Mass	12	Zinc 30 Zn 65.39	Cadmium 48 Cd 112.41	80 80 Hg 200.59 1.9	Ununbium 112 Uub (285)
of the	- Atomic #		=	Copper 29 Cu 63.55 1.9	Ag 107.87	Gold 79 Au 196.97 2.4	Roentgenium 111 Rg (272)
o elqu	ercury 80 ←	200.59 <	10	Nickel 28 28 28 58.69 58.69 1.8	Palladium 46 Pd 106.42 2.2		Darmstadtum 110 DS (271)
lic Ta	→ Mercury 80 ◆	`	6	Cobalt 27 CO 58.93 1.8	Rhodium 45 Rh 102.91 2.2	Iridium 77 F F 192.22 2.2	Metherium 109 Mt (266)
erioc	nt name ——Symbol —	gativity-	œ	Fe 55.85	Ruthenium 44 Ru 101.07 2.2		Hassium 108 HS (265)
ern P	Element name— Symbol—	Electronegativity-	~	Mn 54.94 1.5	Technetium 43		Bh (262)
Mode	ӹ	Ш	9	Chromium 24 Cr Cr 52.00 1.6	Molybdenum 42 Mo 95.94 1.8	Tungsten 74 W 183.84 1.7	Sg (263)
The	nasses ounded aces. es are to	isured ibject to rules. Do irther	ro	Vanadium 23	Niobium 41 Nb 92.91	Tantalum 73 73 Ta 180.95 1.5	Dubrium 105 Db (262)
	Average relative masses are 2001 values, rounded to two decimal places. All average masses are to	be treated as measured quantities, and subject to significant figure rules. Do not round them further when performing calculations.	4	Titanium 22	Zrconium 40 Zr 91.22 1.4	Hafnium 72 72 Hf 178.49 1.3	Rutherfordium 104 Rf (261)
	Average are 200 to two c	be treated as quantities, a significant fi not round th when perforr calculations.	ო	Scandium 21 SC SC 44.96 1.3	39 X X 88.91	Lutetium 71 Lu 174.97 1.1	103 Lr (262)
						57-70	89-102
	8	Beryllium 4 4 Be 9.01	Mg 24.31	Calcium 20 Ca 40.08 1.0	Strontium 38 Sr Sr 87.62 11.0	Barium 56 Ba 137.33 0.9	Radium 88 88 Ra (226) 0.9
-	Hydrogen 1.01	Lithium 3 3 Li 6.94 1.0	Sodium 11 Na 22.99	Potassium 19 K 39.10 0.8	Rubidium 37 Rb 85.47 0.8	Cesium 55 CS CS 132.91	Francium 87 Fr (223) 0.7

*lanthanides	57 La	58 58 Ce	Praseodymium 59 Pr	Neodymium 60 Nd	61 Bm Pm	Samarium 62 Sm	63 Eu Eu	Gadolinium 64 Gd 727 25	150 03	bysprosium 66 Dy	67 HOMium HO	68 Er Er	Thulium 69 Tm 769 03	Yterbium 70 Yb Y22 0.4
	1.1	1.1	1.1	1.1	1.1	1.20.30	1.1	1.2	1.1	1.2	1.2	1.2	1.3	1.1
:	Actinium 89	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102
**actinides	Ac	드	Ра	-	ď	Pu	Am	S	兹	ຽ	Es	F	β	ž
	(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(228)
		 	1.5	4.	4:	د .	.3	1.3	1.3	 	1.3	 	1.3	.3