ÉQUILIBRES ET RÉACTIVITÉ CHIMIQUES

2018-2019

EXAMEN PROPÉDEUTIQUE 25 JANVIER 2019

Étudiant-e : FURTER Lisa

No de place : CE6 75

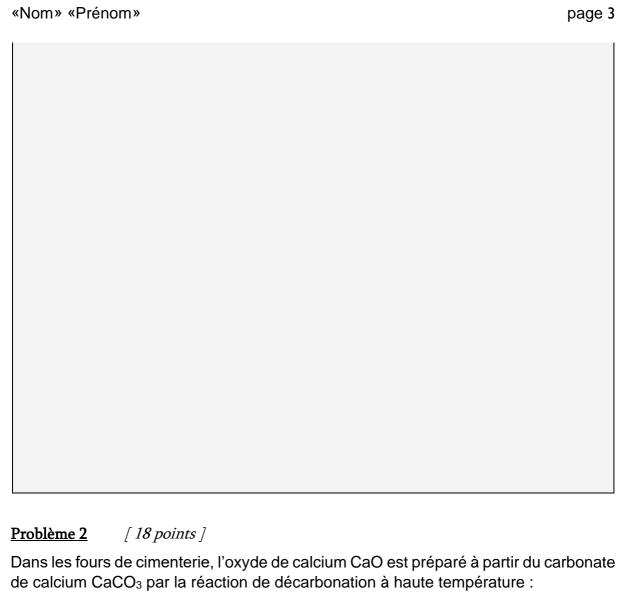
Consignes importantes

- La durée globale de l'épreuve est de 3 heures 00 min.
- Le recueil de feuilles de réponses doit être signé au bas de la page 16.
- On ne pourra quitter la salle d'examen qu'après avoir rendu définitivement sa copie et signé le registre des participants.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un formulaire de 2 côtés de page A4 au maximum et d'une calculatrice scientifique (sans aucun fichier alphanumérique stocké, ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve.
- Une pièce d'identité avec photographie, le formulaire et la calculatrice doivent être déposés sur le plan de travail et rester visibles pendant toute la durée de l'épreuve.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres gris prévus à cet effet (au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant).
- Les réponses devront donner **suffisamment d'indications** pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de **brouillon ne seront pas récoltées** à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les résultats numériques devront être livrés avec leurs unités.
- Si au cours de l'épreuve, une **erreur apparente d'énoncé ou une donnée manquante** devait être repérée, on le signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

 Les surveillants ne répondront à **aucune** question relative à la donnée.

«Nom» «Prénom» page 2

Problème 1 / 12 points /


Un mélange gazeux de volume initial $V_i = 1,00$ L contenant 40 % en volume de méthane CH₄ et 60 % en volume de dioxygène O₂ à une température $T_i = 20,00$ °C et à une pression

P = 700 Torr est brûlé à pression constante dans un calorimètre parfaitement isolant dont la capacité calorifique totale est de 5'109 J K⁻¹. La capacité calorifique du mélange réactionnel est considérée comme négligeable.

La combustion complète du méthane ne produit que du gaz carbonique CO₂ et de l'eau liquide. Quelle sera la température du calorimètre à l'équilibre, après réaction du mélange gazeux.

Données: Entre 20°C et 25°C:

 $\Delta H^{0_f}(CH_4) = -74,6 \text{ kJ} \cdot \text{mol}^{-1}; \Delta H^{0_f}(CO_2) = -393,5 \text{ kJ} \cdot \text{mol}^{-1};$ $\Delta H^{0_f}(H_2O, g) = -241,8 \text{ kJ} \cdot \text{mol}^{-1}; \Delta H^{0_{vap}}(H_2O) = +44,0 \text{ kJ} \cdot \text{mol}^{-1}.$

 $CaCO_3$ (s) \rightleftarrows CaO (s) + CO_2 (g) (1) ΔG_{f}^{ρ} [kJ mol⁻¹] S^{0} [J mol⁻¹ K⁻¹] $C_{P, m}$ [J mol⁻¹ K⁻¹ Données: Composé T = 25°C CaCO₃ (s) **−** 1127,8 93,0 82,1 43,2 CO₂ (g) -394,2213,7 -603,640,0 36,9 CaO (s)

a) Calculer l'entropie molaire standard de la réaction (1) à une température T = 298 K. Comment pouvait-on prévoir le signe de cette grandeur ?

		_	

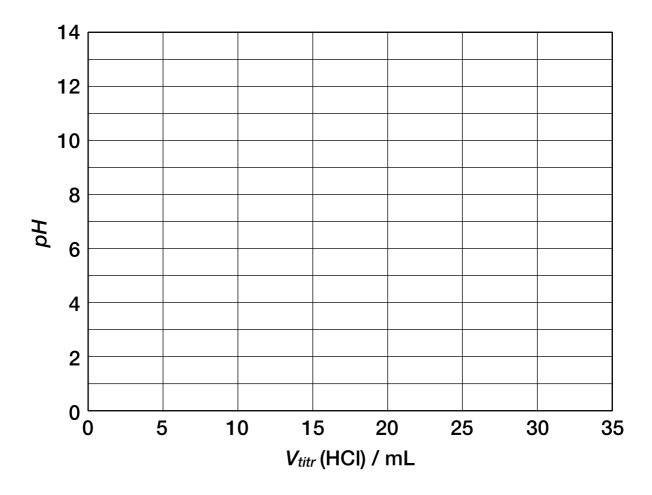
«Ν	Nom» «Prénom»	page 4
b)	Calculer l'enthalpie libre molaire standard de la r	éaction de décarbonation de
	à T = 298 K. La réaction est-elle spontanée à cette	température ?
c)	On place du carbonate de calcium dans un récip préalablement fait le vide. Quelle est la pression de le récipient porté à une température $T = 850$ °C?	
	Indications : On considérera que les valeurs indépendantes de température, alors qu'a priori les valeu	la
	pas.	

«Nom» «Prénom»	page 5

«Ν	lom» «Prénom»	page 6
Pro	oblème 3 [10 points]	
et l une dio pré	monoxyde d'azote NO est un polluant de l'air problématique pour l'intégrité de la couche d'ozone stratosphérique. La source principe réaction se produisant dans les moteurs à explosion entre exygène, constituants de l'air. Après la combustion explosive ésence d'air dans le cylindre du moteur, la température atteint $T=2$ anditions, le restant de dioxygène peut réagir avec le diazote selon	le de ce gaz est le diazote et le de l'essence en 2'500 K. Dans ces
	$N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$	
a)	L'enthalpie libre molaire standard de la réaction à $\Delta G_r^0 = +184 \text{ kJ mol}^{-1}$. Écrire l'expression littérale du quotier calculer la valeur numérique de la constante d'équilibre K à la mé Comment cette constante varie-t-elle avec la pression totale cylindre du moteur ?	nt réactionnel et ême température.
b)	Si la pression partielle P_i (N ₂) du diazote dans le cylindre à la fir avant la réaction avec le dioxygène résiduel est de 80,0 atm, et s du dioxygène de l'air a été consommé lors de la combustion de l' la pression partielle de NO qui se forme dans le cylindre du mo que l'air contient 80 % de diazote et 20 % de dioxygène. constituants de l'air sont négligés.	sachant que 95 % essence, calculer oteur. On rappelle

«Nom» «Prenom»	page /

«No	om» «Prénom»	page 8
Prol	blème 4 [33 points]	
dan: diffé ajou	quantité de dioxyde de carbone CO ₂ dissout sous forme d'a ns une eau minérale gazéifiée peut être déterminée par ur érence : A 1,00 L d'eau minérale gazéifiée fraichemer ute 16,83 g d'hydroxyde de potassium KOH solide. L'excè vi à neutraliser l'acide carbonique est titré ensuite classic C.	n titrage acide-base par nt ouverte à <i>T</i> = 4°C, on ès de KOH n'ayant pas
<u>Don</u>	nnées : Acide carbonique H_2CO_3 : $K_{a^1} = 4,27 \times 10^{-7}$; $K_{a^2} = 4$	$1,79 \times 10^{-11}$. $T = 22$ °C.
a)	Écrire l'équation de la réaction de neutralisation complète d	de H ₂ CO ₃ (aq) par KOH.
	Le titrage d'un échantillon de $100,0$ mL de la solution obter dans l'eau gazéifiée par une solution titrante de HCl $1,00$ point d'équivalence pour un volume $V_{titr} = 10,00$ mL. Quels analytique de H_2CO_3 dissout dans l'eau minérale d'orig gazéifiée ? Expliciter et justifier toute approximation évents	M aboutit à un premier sétaient la concentration gine et le <i>pH</i> de l'eau

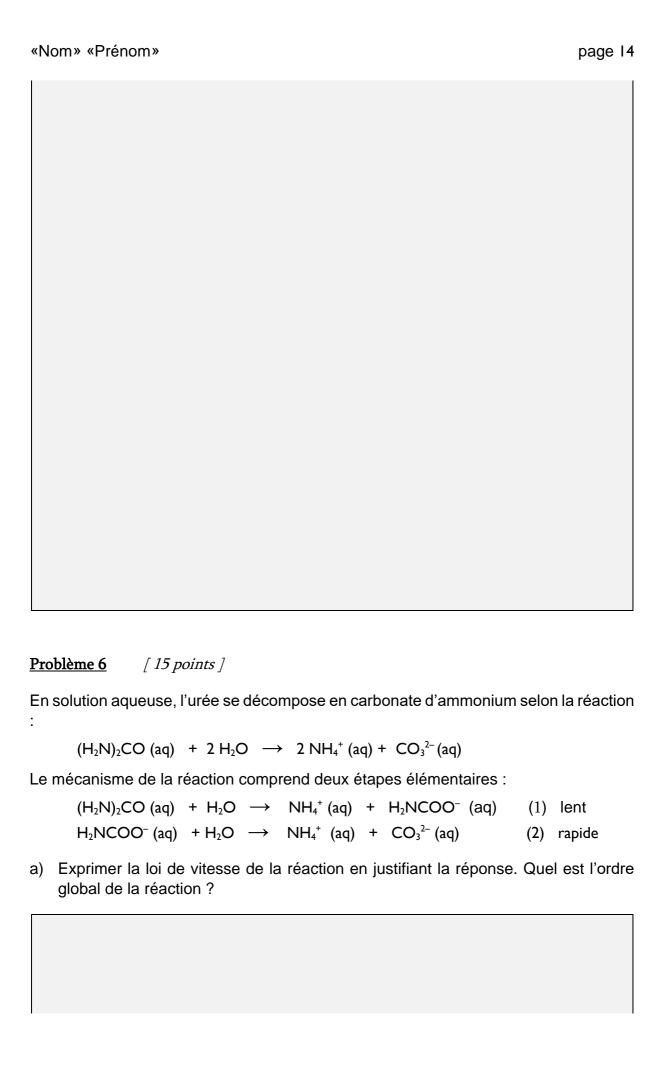

«ΙΛ	iom» «Prenom»	page 9
c)	Calculer le pH de la solution titrée pour V_{titr} (HCI) = 0,0 mL; 10,0 mL; 15,0 mL; 25,0 mL; 30,0 mL et 35,0 mL.	5,0 mL :

«Nom» «Prénom»	page I0

«No	om» «Prénom»	page II
d)	Reporter les sept points calculés dans la partie précédente sur le que dessous et tracer aussi précisément que possible la courbe de titrage	

Identifier clairement le(s) point(s) d'équivalence (PE), le(s) point(s) de demineutralisation (PDN) et les éventuelles zones où un effet tampon est attendu.

«Nom» «Prénom» page 12


Problème 5 / 12 points /

On considère une pile électrochimique constituée de deux compartiments reliés par un pont électrolytique à une température de 25°C. Le premier compartiment est constitué d'une électrode de platine inerte plongeant dans une solution aqueuse contenant à la fois du sulfate ferreux, FeSO₄, et du sulfate ferrique, Fe₂(SO₄)₃, avec $a(Fe^{2+}) = 0,150$ et $a(Fe^{3+}) = 0,855$. Le second compartiment comporte une électrode à hydrogène, alimentée par de l'hydrogène gazeux à une pression $P(H_2) = 1$ bar, et plongeant dans une solution de chlorure d'ammonium NH₄Cl. La force électromotrice de la pile est $\Delta E = 1,124$ V.

Données : E^0 (Fe³⁺/Fe²⁺) = +0,770 V / SHE , $\mathcal{F} = 96'485 \text{ J V}^{-1} \text{ mol}^{-1}$

a) Écrire les demi-réactions ayant lieu sur chacune des deux électrodes. Écrire la réaction d'oxydo-réduction globale décrivant le fonctionnement de la pile dans le sens spontané de gauche à droite et identifier l'anode et la cathode. Justifier les réponses.

«Nom» «Prénom»	page 13
b) Quel est le potentiel <i>E</i> [V / SHE] de l'électrode à hydrogène ?	
c) Quel est le <i>pH</i> de la solution de chlorure d'ammonium dans compartiment ?	le second

«Ν	Iom» «Prénom»	page 15
b)	En solution aqueuse diluée, la constante de vitesse de la décomposition à $T = 350$ K est $k = 4.0 \times 10^{-5}$ s ⁻¹ . Quel est l'ordre apparent de la réaction ? la réponse à l'aide de <u>deux</u> arguments et exprimer la loi de vitesse effect réaction.	? Justifier
c)	En solution aqueuse diluée à T = 350 K, combien de temps faut-il attenque 80 % de l'urée se soit décomposée ?	ıdre poui

«Ν	lom» «Prénom» page 16
d)	L'énergie d'activation de la réaction est ΔU^{\ddagger} = 166 kJ mol ⁻¹ . En admettant que cette valeur est indépendante de la température, calculer la constante de vitesse de la réaction et le temps de demi-réaction de l'urée à une température T = 300 K.
e)	En présence de l'enzyme uréase, la constante de vitesse de décomposition de l'urée à 300 K devient $k = 3,0 \times 10^4 \text{ s}^{-1}$. On considère que le facteur de fréquence de la réaction est le même qu'en absence d'enzyme. Quel est le rôle de l'uréase dans la réaction ? Calculer la valeur de l'énergie d'activation de la réaction en présence d'uréase.

«Nom» «Prénom»	р	age 17
	Fin de l'épreuve	
Signature de l'étudiant-e :		

«Nom» «Prénom» page 18

18	2 2 Helium 4.00	Neon 10 Ne 20.18	Ar 39.95	83.80 3.0	Xenon 54 Xe 131.29 2.6	Radon 86 Rn (222) 2.4	
	17				126.90 1	Astatine 85 At (210) ((222	
	16	-					Ununhexium 116 Uuh (292)
	15	Nitrogen 7 N N 14.01		Arsenic 33 AS 74.92 2.0	Antimony 51 Sb 121.76	Bismuth 83 Bi 208.98 1.9	Ununpentium 115 Uup (288)
	4	Carbon 6 C C 12.01	Silicon Si 28.09 1.8	Germanium 32 Ge 72.61	50 Sn 118.71	Pb 207.20	Ununquadium 114 Uuq (289)
he Modern Periodic Table of the Elements	5	Boron 5 B 10.81 2.0		31 31 Ga 69.72 1.6	49 49 In 114.82		Ununtrilum 113 Uut (284)
Elen	#	– Avg. Mass			Cd (112.41 1.7	313027	112 Uub (285)
ot the	- Atomic #	Avg	r e		Ag 107.87	Au 196.97 2.4	Roentgenium 111 Rg (272)
o e/q	ercury 80 ←	200.59 < → 1.9	10	28 28 Nickel 58.69 1.8	Palladium 46 Pd Pd 106.42 2.2		Ds (271)
1C 1a	Mercury 80 4		6		Rhodium 45 Rh 102.91 2.2		Meitnerium 109 Mt (266)
eriod		gativity-	80	Fe 55.85	Ru Ru 101.07 2.2	Osmium 76 OS 190.23 2.2	Hassium 108 HS (265)
in F	Element name	Electronegativity-	7	2.03	Technetium 43		Bh (262)
Mode	Ä	亩	9	Chromium 24 Cr 652.00 1.6	Molybdenum 42 42 Mo 95.94	Tungsten 74 W 183.84	Seaborgium 106 Sg (263)
l he l	asses ounded ces.	sured bject to ules. Do rther	ĸ	Vanadium 23 V V 50.94 1.6	Niobium 41 Nb 92.91	Tantalum 73 73 Ta 180.95 1.5	Dubnium 105 Db (262)
·	Average relative masses are 2001 values, rounded to two decimal places. All average masses are to	be treated as measured quantities, and subject to significant figure rules. D not round them further when performing calculations.	4	722 71 47.88	Zirconium 40 Zr 91.22 1.4	Hafnium 72 Hf 178.49 1.3	Rutherfordium 104 Rf (261)
	Average are 2001 to two d	be treated as quantities, ar significant fit not round the when perforr calculations.	က	Scandium 21 Sc 44.96 1.3	39 39 × × × × × × × × × × × × × × × × ×	Lutetium 71 Lu 174.97 1.1	Lr (262)
						57-70 *	89-102 **
	7	Beryllium 4 Be 9.01	Magnesium 12 Mg 24.31 1.2	Calcium 20 Ca 40.08 1.0	Strontium 38 Sr 87.62 1.0	Barium 56 Ba 137.33 0.9	Radium 88 Rad (226) 0.9
-	Hydrogen 1.01	Lithium 3 Li 6.94	Na 22.99 0.9	Potassium 19 K X 39.10 0.8	Rubidium 37 Rb 85.47 0.8	Cestum 55 CS 132.91	Francium 87 Fr (223) 0.7
		L		1	1	I	I

	Lanthanum 57	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
nanides	Ľ	ဝီ	ڇ	ž	Pa	Sm	П	၉	Q L	2	운	ш	Ē	Ϋ́
	138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	7:	7:	1.7	1:	[:	1.2	1.1	1.2	1.1	1.2	1.2	1.2	1.3	1:
ctinides	Actinium 89 Ac (227)	Thorium 90 Th 232.04	Protactinium 91 Pa 231.04	Uranium 92 U 238.03	93 Np (237)	Plutonium 94 Pu (244)	Americium 95 Am (243)	Ourium 96 Cm (247)	97 97 BK (247)	Californium 98 Cf (251)	Essteinium 99 Es (252)	Fermium 100 Fm (257)	Mendelevium 101 Md (258)	Nobelium 102 No (259)
_	1.1	5.7	1.5	1.4	1.4	£.	1.3	£.	1.3	1.3	5.7	1.3	£.	7.3