EXAMEN PROPÉDEUTIQUE 25 JANVIER 2016

Etudiant-e: «Nom» «Prénom»

Place: «Place»

Consignes importantes

- La durée globale de l'épreuve est de 3 heures 00 min.
- Le recueil de feuilles de réponses doit être signé au bas de la page 16.
- On ne pourra quitter la salle d'examen qu'après avoir rendu définitivement sa copie et signé le registre d'épreuve.
- En dehors du matériel d'écriture normal et de feuilles de brouillon vierges, seul l'usage d'un formulaire de 2 côtés de page A4 au maximum et d'une calculatrice scientifique (sans aucun fichier alphanumérique stocké ni possibilité de communication) est autorisé. Un tableau périodique est fourni à la fin de la donnée de l'épreuve.
- Une pièce d'identité avec photographie, le formulaire et la calculatrice doivent être déposés sur le plan de travail et rester visibles pendant toute la durée de l'épreuve.
- Toutes les réponses seront inscrites à l'encre sur les pages suivantes, dans les cadres prévus à cet effet (au besoin, utiliser le verso de la feuille en indiquant clairement "voir verso" dans le cadre correspondant).
- Les réponses devront donner **suffisamment d'indications** pour que le correcteur puisse apprécier le raisonnement qui a permis de les obtenir.
- Les feuilles de brouillon ne seront pas récoltées à la fin de l'épreuve et ne pourront donc pas être prises en compte.
- Les résultats numériques devront être livrés avec leurs unités.
- Si au cours de l'épreuve, une **erreur apparente d'énoncé ou une donnée manquante** devait être repérée, on le signalera par écrit sur la copie et poursuivra en expliquant les initiatives qu'on serait amené à prendre.

Les surveillants ne répondront à aucune question relative à la donnée.

«Nom» «Prénom» page 2

Problème	1	√ 16 points	7
Probleme	1	/ 10 DOINTS	/

La poudre noire, utilisée comme explosif jusqu'à la fin du 19e siècle, est constituée d'un mélange de nitrate de potassium (salpêtre), de carbone (charbon de bois) et de soufre. La combustion de la poudre se produit sans participation de l'oxygène de l'air selon la réaction (équation non équilibrée) :

$$\mathsf{KNO}_3$$
 (s) + C (s) + S (s) \rightarrow CO $_2$ (g) + CO (g) + N $_2$ (g) + K $_2\mathsf{CO}_3$ (s) + K $_2\mathsf{S}$ (s)

a)	Indiquer le nombre d'oxydation de chacun des éléments des réactifs et des
	produits et équilibrer l'équation chimique. Combien d'électrons sont échangés au
	cours de la réaction ?

ession atmospherique (1,00_atm) et a une température de 2′250°C d'un mélange de 7,00 g de nitrate de potassium, 2,00 g de carbone et 1,00 g de

sourre si on neglige toute reaction avec le dioxygene de l'air ?

«Nom» «Prénom»	page 3
c) Quelle énergie est transmise à l'environnement sous forme de travail de lors de l'explosion des 10 g de poudre dans les mêmes conditions, avant gaz produits ne refroidissent ?	
Problème 2 [36 points]	
La réaction de Deacon fait partie d'un processus secondaire permettant d'éli chlorure d'hydrogène gazeux (HCl, appelé aussi acide chlorhydrique), lors produit de manière indésirable dans un premier processus chimique. La prend place HCl (g) et le dioxygène O ₂ (g) présent dans l'air, à haute température et en p d'un catalyseur.	qu'il est réaction entre
a) Ecrire l'équation équilibrée de la réaction de Deacon, sachant que les prola réaction sont la vapeur d'eau H ₂ O (g) et le dichlore gazeux Cl ₂ (g).	oduits de

«Ν	m» «Prénom» page 4
b)	A quel type de réaction la réaction de Deacon appartient-elle? Justifier la réponse.
c)	Un mélange de 1,00 mol de chlorure d'hydrogène et de 4,00 mol d'air réagit à une température $T=600$ K, sous une pression constante $P=1$ atm. A l'équilibre, la fraction molaire de dichlore vaut $x(\operatorname{Cl}_2)=0,04$. Calculer la constante d'équilibre de la réaction réversible à $T=600$ K. L'air est assimilé à un mélange comprenant 20 % (en volume) de dioxygène O_2 et 80 % de diazote N_2 . Tous les gaz sont considérés comme parfaits.

«Nom» «Prénom»	page 5
d) Déterminer l'enthalpie libre standard molaire (par rapport à HCl) de la ro $T=600~\mathrm{K}$. La réaction est-elle spontanée dans ces conditions ?	éaction à

«Nom» «Prénom»	page 6

e) A partir des données thermodynamiques à T = 25°C reportées ci-dessous, calculer l'enthalpie standard molaire (par rapport à HCI) de la réaction de Deacon à T = 600 K. La réaction est-elle endothermique ou exothermique?

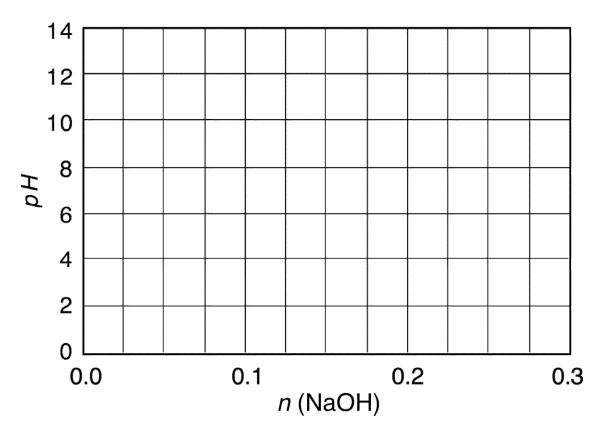
T = 25°C	HCI (g)	O ₂ (g)	H ₂ O (g)	Cl ₂ (g)
ΔH_f^0 [kJ· mol ⁻¹]	- 92,31		-241,82	
C _{P,m} [J· K ⁻¹ · mol ⁻¹]	29,12	29,36	31,58	33,91

ΔH_f^0 [kJ· mol ⁻¹]	- 92,31		-241,82	
C _{P,m} [J· K ⁻¹ · mol ⁻¹]	29,12	29,36	31,58	33,91

page 7
<i>T</i> = 600 K.
ns de l'eau es produits 0 ⁻⁵ .
en solution. a résolution toutes les
plomb est †] et vérifier

«Nom» «Prénom»	page 8
b) A la solution saturée préparée précédemment, on ajoute de l'acide H ₂ SO ₄ à raison d'une concentration de 1,0 mol·L ⁻¹ . Que deviennent l des concen-trations [Ag ⁺] et [Pb ²⁺]? Par simplification, on considére comme un acide fort pour ses deux dissociations et on admettra que est idéale.	es valeurs era H ₂ SO ₄

«Ν	lom» «Prénom»	page 9
Pro	oblème 4 [20 points]	
CO dor	glycine est un acide aminé qui, dans sa forme OO^- . En solution aqueuse, la constante d'acid nnée par p $K_{a1}=2,4$ alors que la constante nnée par p $K_{b2}=4,3$.	ité de la fonction carboxylique est
a)	Ecrire les deux équilibres acide-base corres pK_{a2} .	spondants et calculer la valeur de
b)	On considère une solution aqueuse de gly diacide. Quelle est la valeur de son pH? Justin	
c)	Quel est le <i>pH</i> d'une solution aqueuse 10 ⁻¹ sodium ?	mol·L ⁻¹ d'un sel de glycinate de


«Ν	lom» «Prénom»	page 10
d)	On considère une solution aqueuse de glycine dans sa form neutre, suffisamment concentrée pour qu'on puisse négliger les provenant de l'équilibre d'autoprotolyse de l'eau. Quel est solution?	ions H+ et OH-
e)	On titre 1 litre de la solution du point (b) par une solution de Na Tracer aussi précisément que possible sur le graphique ci-desse titrage, en plaçant les points correspondant à n (NaOH) = 0,0; 0,0	ous la courbe de

0,2 mol. On négligera l'effet de dilution dû à l'addition de la solution de soude.

attendu.

Indiquer clairement le ou les points d'équivalence (PE) et le ou les points de demi-neutralisation (PDN). Encercler la ou les zones où un effet tampon est

«Nom» «Prénom» page 11

Problème 5 [17 points]

On verse dans un bécher en verre 250 ml d'une solution aqueuse de sulfate de cuivre CuSO₄ 4 $\times 10^{-2}$ M et 250 ml d'une solution de sulfate d'argent Ag₂SO₄ 10^{-2} M. On dépose au fond du bécher une pièce de cuivre de 3,05 g et une pièce d'argent pur de 2,80 g en prenant garde que ces deux pièces métalliques ne se touchent pas.

Données:
$$E^0$$
 (Ag+/Ag) = 0,800 V / SHE ; E^0 (Cu+/Cu) = 0,520 V / SHE E^0 (Cu²⁺/Cu+) = 0,159 V / SHE $T = 20^{\circ}$ C ; γ (Ag+) $\approx \gamma$ (Cu²⁺) ≈ 1

a) Ecrire l'équation chimique équilibrée de la réaction globale. Etablir le sens spontané de la réaction en comparant les potentiels standard des couples redox concernés.

«N	lom» «Prénom»	page 12
b)	Calculer le quotient réactionnel initial et la constante d'équilibre de	la réaction.
c)	On laisse évoluer la réaction jusqu'à l'équilibre. Quelles seront les finales respectives des ions Cu ²⁺ et Ag ⁺ en solution ?	concentrations

«Nom» «Prénom»	page 13
d) Identifier la cathode et l'anode. Que se produit-il en solu deux pièces de métal respectives ? Justifier votre répons	ution et à la surface des e.

«Nom» «Prénom» page 14

Problème 6 [15 points]

L'ozone O₃ est formé dans la stratosphère par le mécanisme photochimique suivant :

- (1) O_2 + lumière UV \rightarrow 2 O·
- (2) $O_2 + O_1 \rightleftarrows O_3$

L'ozone ainsi formé se décompose selon la réaction globale simplifiée :

(3)
$$2 O_3 \rightarrow 3 O_2$$

On a déterminé expérimentalement que la loi de vitesse de cette dernière réaction est de la forme :

(4)
$$V = K' \cdot P(O_3)^2 / P(O_2)$$
.

a)	Proposer	un méca	ınisme en	deux éta	apes pour	cette réa	ction, co	mprenar	it une
	première	réaction	élémenta	ire révers	sible rapide	e suivie	d'une s	seconde	étape
	lente. Vér	ifier que l	e mécanis	me corre	sponde bie	n à la loi d	de vitess	se donné	э.

«Non	n» «Prénom»	page 15
u 0 m %	Cour étudier en laboratoire la réaction de décomposition de l'ozone, cone cellule fermée de 200 cm³ contenant du dioxygène pur sous une pre ,2 atm à <i>T</i> = 21°C. On injecte alors à l'intérieur de la cellule 0,1 cm³ d'ozonême pression. On observe par spectrométrie infrarouge une diminution de de la concentration d'ozone dans la cellule en une minute. Quelle est le la constante de vitesse <i>k'</i> de la loi de vitesse (4) à cette température ?	ssion de one à la de 97,8 la valeur

«No	m» «Prénom»	page 16
	La même expérience menée à une température de disparition que de 0,02 % de l'ozone après une minute. l'énergie d'activation de la réaction ?	–50 °C n'aboutit à la Quelle est la valeur de

«Nom» «Prénom»		page 17
	Fin de l'épreuve	
Signature de l'étudiant(e) :		

«Nom» «Prénom» page 18

4.00	Neon 10 Neon 20.18	Argon Argon 39.95	83.80 3.0	Xenon 54 Xe 131.29	Radon 86 Rn (222) 2.4	
7	Fluorine 9 9	Chlorine 17 CI 35.45 3.0	Bromine 35 Br 79.90 2.8	126.90	Astatine 85 At (210) 2.2	
16	Oxygen 8 0 16.00 15.00	S 32.07	Selenium 34 Se 78.96	Tellurium 52 Te 127.60	Polonium 84 Po (209) 2.0	Ununhexium 116 Uuh (292)
15	Nitrogen 7 N N N N N N N N N N N N N N N N N N	Phosphorus 15 P 30.97 2.1	Arsenic 33 AS 74.92 2.0	Antimony 51 Sb 121.76	83 83 Bi 208.98 1.9	Uup (288)
4	Carbon 6 6 C 12.01	Silicon 74 74 28.09 1.8	Germanium 32 Ge 72.61	Sn Sn 118.71	Lead 82 Pb 207.20	Uuq (289)
5	5 B 10.81	Aluminum 13 Al 26.98 1.5	Gallium 31 Ga 69.72 1.6	49 H 114.82		Unut 113 Uut (284)
#	. Mass	7	Zinc 30 Zn 65.39	Cadmium 48 Cd 112.41 1.7	Mercury 80 Hg 200.59 1.9	Ununbium 112 Unb (285)
Atomic #	— Avg. Mass	E	Copper 29 Cu 63.55 1.9	Ag 107.87 1.9	Au 79 Au 196.97 2.4	Roentgenium 111 Rg (272)
	* Hg 200.59 ← → 1.9	0	Nickel 28 28 58.69 1.8	Palladium 46 Pd 106.42 2.2	Platinum 78 Pt 195.08	Darmstadtium 110 DS (271)
∞		6	Cobalt 27 Co 58.93 1.8	Rhodium 45 Rh 102.91 2.2	Iridium 77 77 Ir 192.22 2.2	Methnerium 109 Mt (266)
ame	Symbol — onegativity-	00	Fe 55.85	Ruthenium 44 Ru 101.07 2.2	Osmium 76 OS 190.23 2.2	Hassium 108 HS (265)
Element name > Mercury	Symbol —— Symbol — Electronegativity—	۲	Mn 54.94 1.5	Technetium 43	Rhenium 75 Re 186.21 1.9	Bohrium 107 Bh (262)
Ë	ũ	9	Chromium 24 Cr Cr 52.00 1.6	Molybdenum 42 Mo 95.94 1.8	Tungsten 74 W 183.84 1.7	Seaborgium 106 Sg (263)
asses unded ces.	s are to rured ject to ules. Do ther	2	Vanadium 23 V 50.94 1.6	Niobium 41 Nb 92.91 1.6	Tantalum 73	Dubnium 105 Db (262)
Average relative masses are 2001 values, rounded to two decimal places.	All average masses are to be treated as measured quantities, and subject to significant figure rules. Do not round them further when performing calculations.	4	Titanium 222 Ti 47.88	Zrconium 40 2r 91.22 1.4	Hafnium 72 Hf 178.49 1.3	Rutherfordium 104 Rf (261)
Average are 2001 to two de	All average no be treated as quantities, and significant find not round the when perfort calculations.	ო	Scandium 21 21 SC 44.96 1.3	39 × × × × × × × × × × × × × × × × × × ×	Lutetium 71	Lawrencium 103 Lr (262)
					57-70 *	89-102 **
7	Beylium 4 Be 9.01	Magnesium 12 NG 24.31 1.2	Calcium 20 Ca 40.08 1.0	Strontium 38 Sr Sr 87.62 1.0	Barium 56 Ba 137.33	Radium 88 Ra (226) 0.9
Hydrogen 1.01	2.1 3 3 6.94 1.0	Sodium 11 Na 22.99 0.9	Potassium 19	37 87 Rb 85.47 0.8	Cesium 55 CS 132.91	Francium 87 Fr (223) 0.7

The Modern Periodic Table of the Elements

*lanthanides	Lanthanum 57 La 138.91	Certum 58 Ce 140.12	Praseodymium 59 Pr 140.91	Neodymium 60 Nd 144.24	Promethium 61 Pm (145) 1.1	Samarium 62 Sm 150.36	Europium 63 Eu 151.97	Gadolinium 64 Gd 157.25 1.2	Terbium 65 Tb 158.93	Dysprosium 66 Dy 162.50 1.2	Holmium 67 Ho 164.93	Erbium 68 Er 167.26	Fhullum 69	Yterbium 70 Yb 173.04 173.04
**actinides	Actinium 89 89 AC (227) 1.1	Thorium 90 Th 232.04 1.3	Protactinium 91 91 Pa 231.04 1.5	Uranium 92 U 238.03 1.4	93 Np (237)	Plutonium 94 Pu (244) 1.3	Americium 95 Am (243) 1.3	Curium 96 Cm (247) 1.3	Brkelium 97 Bk (247) 1.3	98 98 Cf (251)	Einsteinlum 99 PS ES (252) 1.3	Fermium 100 Fm (257) 1.3	Mendelevium 101 Md (258) 1.3	Nobelium 102 No (259) 1.3