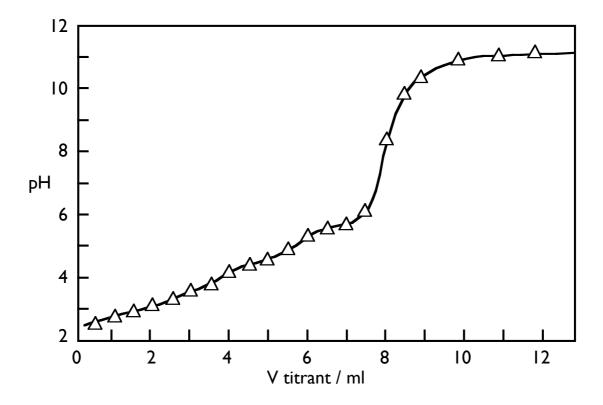
EXERCICES – SÉRIE 8

Acides polyprotiques, solutions tampons, courbes de titrage

- **8.1** Calculer la concentration en H⁺ d'une solution de H₂S 0.10 M. Les constantes d'équilibre de dissociation de H₂S sont K₁ = $1.0 \cdot 10^{-7}$ et K₂ = $1.2 \cdot 10^{-13}$.
- 8.2 Calculer $[H^+]$, $[H_2PO_4^-]$, $[HPO_4^{2-}]$ et $[PO_4^{3-}]$ dans une solution d'acide phosphorique H_3PO_4 0.01 M.

$$K_1 = 7.1 \cdot 10^{-3}, K_2 = 6.2 \cdot 10^{-8}, K_3 = 4.4 \cdot 10^{-13}.$$


- **8.3** Quel est le pH d'une solution d'hydrogénocarbonate (bicarbonate) de sodium NaHCO₃ 0.01 M? Les K_1 et K_2 de l'acide carbonique H_2CO_3 sont respectivement égaux à $4.5 \cdot 10^{-7}$ et $5.7 \cdot 10^{-11}$.
- 8.4 On veut préparer une solution tampon de pH = 8.50. (a) En partant de 0.010 mol de KCN et des réactifs inorganiques usuels de laboratoire, comment prépare-t-on un litre de solution tampon ? (b) Quelle sera la variation du pH après addition de $5\cdot10^{-5}$ mol de HClO₄ à 100 ml de solution tampon ? (c) Quelle sera la variation du pH après addition de $5\cdot10^{-5}$ mol de NaOH à 100 ml de solution tampon ?

La constante d'acidité de l'acide cyanhydrique HCN est $K_a = 4.8 \cdot 10^{-10}$.

- 8.5 Le K_a de l'acide acétique CH₃COOH est 1.85·10⁻⁵. Un échantillon de 40.0 ml d'une solution d'acide acétique 0.010 M est titrée par une solution de NaOH 0.02 N. Calculer le pH après addition de (a) 3.0 ml, (b) 10.0 ml, (c) 20.0 ml et (d) 30.0 ml de la solution de NaOH.
- 8.6 Calculer un point de la courbe de titrage de 50.0 ml d'une solution d'acide chloracétique $CH_2CICOOH~0.010~M$ si l'on ajoute 2.0 ml d'une solution titrante de NaOH $1.00\cdot10^{-2}~N$.

La constante d'acidité de l'acide chloracétique est $K_a = 1.4 \cdot 10^{-3}$.

- 8.7 Un indicateur acide-base a un K_a égal à $3.0\cdot10^{-5}$. La forme acide de l'indicateur est rouge et la forme basique est bleue. De combien doit varier le pH pour faire passer l'indicateur de la forme rouge à 75 % à la forme bleue à 75 % ?
- 8.8 Un échantillon de 50 ml d'une solution aqueuse 5.3·10⁻³ M d'un composé organique inconnu est titrée par une solution de NaOH 0.1 N. La courbe de titrage est représentée à la page suivante. (a) En s'aidant de la table des valeurs de pK_a annexée, déterminer de quel composé organique il s'agit. (b) Quelle est la concentration analytique du composé dans l'échantillon ?

pK_a de composés organiques en solution diluée dans l'eau

Acide	Formule	pKa
Acide trifluorosulfonique	CF ₃ SO ₃ H	~-13
Acide benzènesulfonique	C ₆ H ₅ SO ₃ H	~ -2.5
Acide méthanesulfonique	CH ₃ SO ₃ H	~ -2.0
Acide trifluoroacétique	CF₃COOH	0.0
Acide picrique	$(O_2N)_3C_6H_2OH$	0.3
Acide trichloroacétique	CCl₃COOH	0.77
Acide oxalique	(COOH) ₂	1.2
		4.2
Acide dichloroacétique	CHCl₂COOH	1.25
Acide fluoroacétique	FCH₂COOH	2.6
Acide chloroacétique	CICH₂COOH	2.87
Acide citrique	C(OH)(CH ₂ COOH) ₂ COOH	3.13
		4.76
		6.40
Acide formique	НСООН	3.75
Acide ascorbique	HC(OH)(C ₄ H ₂ O ₄)COOH	4.17
		11.6
Acide benzoïque	C ₆ H ₅ COOH	4.20
Acide acétique	CH₃COOH	4.75
Thiophénol	C ₆ H ₅ SH	6.6
<i>p</i> -nitrophénol	O ₂ NC ₆ H ₄ OH	7.2
Acide péracétique	CH₃COO₂H	8.2
Phénol	C ₆ H ₅ OH	10.0
Ethanethiol	C ₂ H ₅ SH	10.6
Ethanol	C ₂ H ₅ OH	16
p-nitoaniline	O ₂ NC ₆ H ₄ NH ₂	18.5
t-butanol	(CH₃)₃OH	19
aniline	C ₆ H ₅ NH ₂	27
di-isopropylamine	[(CH ₃) ₂ CH] ₂ NH	35.7
benzène	C ₆ H ₆	43