EXERCICES – SÉRIE 5

Enthalpie libre et équilibres chimiques

- **5.1.** Déterminer l'enthalpie libre de la réaction de formation de l'ammoniac gazeux à partir de l'azote et de l'hydrogène moléculaires à 25 °C pour des pressions partielles respectives en N_2 , H_2 et NH_3 de 0.20 atm, 0.42 atm et 0.61 atm. Dans quel sens la réaction se déroule-t-elle spontanément dans ces conditions ? $\Delta G_f^0 (NH_3) = -16.5 \text{ kJ·mol}^{-1}.$
- **5.2** Calculer la constante d'équilibre de la réaction de formation de l'ammoniac gazeux à partir de l'azote et de l'hydrogène moléculaires à 25 °C.
- Quelles conditions de température et de pression préconisez-vous pour la fabrication industrielle de l'ammoniac à partir de N₂ et H₂ (procédé Haber)?
 Les entropies molaires S⁰ à 25 °C des composés purs NH₃, N₂ et H₂ sont respectivement 192.5 |·K⁻¹·mol⁻¹, 191.6 |·K⁻¹·mol⁻¹ et 130.7 |·K⁻¹·mol⁻¹.
- 5.4 L'ion sulfure S^{2-} en solution alcaline réagit avec le soufre solide pour former des ions polysulfures qui ont pour formules S_2^{2-} , S_3^{2-} , S_4^{2-} , ... et ainsi de suite. La constante d'équilibre pour la formation de S_2^{2-} est 1.7 [-], et celle pour la formation de S_3^{2-} à partir de S et S^{2-} est de 5.3 [-]. Quelle est la constante d'équilibre de la réaction de formation de S_3^{2-} à partir de S_2^{2-} et S ?
- 5.5 A 27 °C et sous une pression de 1 atm, N_2O_4 se dissocie à raison de 20 % en NO_2 . (a) Déterminer la constante d'équilibre de la réaction. (b) Quel serait le pourcentage de dissociation de N_2O_4 à 27 °C et sous une pression totale de 0.1 atm ? (c) Quel est le degré de dissociation d'un échantillon de N_2O_4 ayant une masse de 69 g et qui est enfermé dans un récipient fermé de 20 litres à 27 °C ?
- 5.6 Le carbonate d'argent Ag_2CO_3 (s) se décompose dans l'air en oxyde d'argent Ag_2O (s) et en gaz carbonique. Quel pourcentage de CO_2 est-il nécessaire de maintenir dans l'air afin d'éviter une perte de masse du solide lors de son chauffage à 110 °C?
 - La constante d'équilibre de la réaction de décomposition est K = 0.0095 à 110 °C.
- 5.7 A 817 °C, la constante d'équilibre de la réaction entre CO₂ pur et un excès de graphite est de K = 10 [-]. (a) Etablir l'équation de cette réaction d'oxydo-réduction. (b) Quelle est la composition du mélange des gaz obtenu à l'équilibre à 817 °C et sous une pression de 4 atm ? (c) Quelle est la pression partielle de CO₂ à l'équilibre ? (d) Pour quelle pression totale le mélange gazeux contient-il 6 % de CO₂ en volumes ?