EXERCICES – SÉRIE 4

Thermochimie

- **4.1.** Un réacteur chimique est construit en acier et a une masse de 450 kg. Le réacteur contient 200 kg d'eau. Quelle quantité de chaleur est nécessaire pour augmenter la température de l'ensemble de 5°C à 100°C (point d'ébullition de l'eau sous I atm) ? C_P (acier) : 0.46 J·K⁻¹·g⁻¹; C_P (eau liquide) : 4.18 J·K⁻¹·g⁻¹; C_P (vapeur) : 2.01 J·K⁻¹·g⁻¹.
- **4.2**. On refroidit 300 g d'eau à 50°C en y ajoutant 150 g de glace à 0°C. Quelle sera la température résultante du mélange ? ΔH_{fus}^0 (H₂O) = 6.01 kJ·mol⁻¹.
- 4.3 Calculer l'enthalpie standard de réduction de l'oxyde ferrique Fe_2O_3 par l'aluminium à 25°C. Les enthalpies standard de formation ΔH^0_f de Fe_2O_3 (s) et de Al_2O_3 (s) sont respectivement de -821.4 kl· mol⁻¹ et -1668.0 kl· mol⁻¹.
- 4.4 La chaleur dégagée par la combustion de l'acétylène C_2H_2 à 25°C et sous une pression constante de I atm est de I298 kJ· mol⁻¹. Quelle est l'enthalpie standard de formation de l'acétylène gazeux? Les enthalpies standard de formation ΔH_f^0 de CO_2 (g) et H_2O (g) sont respectivement de -393.3 kJ· mol⁻¹ et -285.5 kJ· mol⁻¹.
- 4.5 L'enthalpie standard de formation de la vapeur d'eau à 25°C est de $-241.82 \text{ kJ·mol}^{-1}$. Evaluer sa valeur à 100°C. C_{Pm} (H_2) = 28.8 J·K⁻¹·mol⁻¹; C_{Pm} (O_2) = 29.37 J·K⁻¹·mol⁻¹.
- **4.6** Quelle est la chaleur dégagée dans la préparation de 22.4 litres de H_2S dans les conditions normales à partir de FeS et d'acide chlorhydrique dilué ? $\Delta H_f^0 = -94.89 \text{ kJ} \cdot \text{mol}^{-1} \text{ pour FeS (s)}, 0.0 \text{ kJ} \cdot \text{mol}^{-1} \text{ pour H}^+ \text{ (aq)}, -167.2 \text{ kJ} \cdot \text{mol}^{-1} \text{ pour Cl}^- \text{ (aq)}, -87.78 \text{ kJ} \cdot \text{mol}^{-1} \text{ pour Fe}^{2+} \text{ (aq) et } -20.06 \text{ kJ} \cdot \text{mol}^{-1} \text{ pour H}_2S \text{ (g)}.$
- **4.7** Calculer la variation d'entropie molaire lorsqu'un échantillon d'hydrogène gazeux occupant un volume de 1.12 litres se détend de façon isotherme jusqu'à un volume de 2.24 litres. $k_B = 1.380 \times 10^{-23}$ J·K⁻¹.
- **4.8** Calculer l'entropie de fusion de la glace à 0°C et de vaporisation de l'eau à 100°C, sachant que ΔH_{fus}^0 (H₂O) = 6.01 kJ· mol⁻¹ et ΔH_{vap}^0 (H₂O) = 40.7 kJ· mol⁻¹.
- **4.9** Une personne au repos dissipe environ 100 Watt de chaleur. Evaluer l'entropie produite dans le milieu extérieur au cours d'une journée à 20°C.
- 4.10 Le cerveau d'un étudiant moyen en période de travail intense, par exemple lorsqu'il s'attaque à des problèmes de thermochimie, fonctionne à une puissance de 25 W environ. Quelle masse de glucose faudra-t-il que l'étudiant consomme pour maintenir ce rendement pendant une heure ? L'enthalpie libre standard d'oxydation de $C_6H_{12}O_6$ en CO_2 et en vapeur d'eau à 37°C est $\Delta G^0_r = -2828$ kJ· mol⁻¹.