EXERCICES – SÉRIE 10

Cinétique chimique

10.1 La variation de la pression partielle P_A de l'azométhane avec le temps a été mesurée à 460 K. Les résultats sont donnés ci-dessous. Vérifier que la décomposition :

$$CH_3N_2CH_3$$
 (g) $\rightarrow CH_3CH_3$ (g) + N_2 (g)

est d'ordre 1 en CH₃N₂CH₃ et trouver la constante de vitesse à cette température.

t [s]	0	1000	2000	3000	4000
$P_A / 10^2 \text{ Torr}$	8.20	5.72	3.99	2.78	1.94

10.2 La réaction 2 H_2O_2 (aq) \rightarrow H_2O (l) + O_2 (g) est catalysée par les ions Br^- . Le mécanisme de la réaction est le suivant :

$$H_2O_2$$
 (aq) + Br⁻ (aq) \rightarrow H_2O (l) + BrO⁻ (aq) (lent)
BrO⁻ (aq) + H_2O_2 (aq) \rightarrow H_2O (l) + O_2 (g) + Br⁻ (aq) (rapide)

Ecrire la loi de vitesse de la réaction et donner l'ordre de la réaction par rapport aux différents participants.

10.3 La composition d'une réaction en phase liquide $2 A \rightarrow B$ a été suivie par voie spectrophotométrique avec les résultats suivants :

t /min	0	10	20	30	40	∞
[B] / mol·l ^{-l}	0	0.089	0.153	0.200	0.230	0.312

Déterminer l'ordre de la réaction et sa constante de vitesse.

- **10.4** La loi de vitesse de la réaction 2 A \rightarrow B est d'ordre 2, avec $k = 1,24 \cdot \text{ml} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$. Calculer le temps nécessaire pour que la concentration en A passe de 0.260 M à 0.026 M.
- **10.5** La constante de vitesse d'une réaction donnée est $1.78 \cdot 10^{-4} \text{ mol}^{-1} \cdot 1 \cdot \text{s}^{-1}$ à 19 °C et $1.38 \cdot 10^{-3} \text{ mol}^{-1} \cdot 1 \cdot \text{s}^{-1}$ à 37 °C. Evaluer les paramètres d'Arrhenius de la réaction.
- 10.6 L'énergie d'activation de la décomposition du chlorure de benzènediazonium est de 99.1 kJ·mol⁻¹. A quelle température la vitesse de la réaction sera-t-elle 10 % supérieure à celle mesurée à 25 °C ?
- 10.7 Les aliments pourissent environ 40 fois plus vite à 25°C qu'à 4 °C. Evaluer l'énergie d'activation globale des processus responsables de la décomposition.
- 10.8 On dissout un morceau de sucre $(C_{12}H_{22}O_{11}, 5 g)$ dans une tasse de 200 ml de thé au citron (pH = 3.5) maintenue à 40 °C. Combien de temps faudra-t-il pour que 10% du saccharose soit converti en glucose ? La loi de vitesse de l'hydrolyse est d'ordre 1 en saccharose et en H⁺. Les valeurs numériques nécessaires sont données dans le cours.