
EXERCICES – SÉRIE I

Equilibres acide-base - Titrages

- **I.1.** Calculer le *pH* auquel on assiste au virage d'un indicateur coloré ($K_{\sigma} = 1,0 \cdot 10^{-5}$) dont la concentration analytique est $c_{\sigma} = 1,0 \times 10^{-3}$ M.
- **I.2.** On titre 25 ml d'ammoniaque NH₄OH (pK_b = 4,85) à l'aide d'une solution d'acide chlorhydrique HCl 0,05 M. Le point d'équivalence correspond à un volume $V_{\mathcal{E}} = 18,3$ ml de solution titrante.
 - a) Calculer la concentration analytique c_0 d'ammoniaque dans la solution initiale.
 - b) Déterminer le pH de la solution initiale ($V_{titr} = 0$), celui de la solution au point d'équivalence ($V_{titr} = V_{\xi}$), celui de la solution après ajout de $V_{titr} = {}^{1}/_{2} V_{\xi} = 9,15$ mL de solution titrante et, finalement, le pH de la solution après ajout de $V_{titr} = 2 \cdot V_{\xi} = 36,6$ mL de la solution de HCl.
 - c) Tracer graphiquement la courbe représentant le pH de la solution d'ammoniaque en fonction du volume V_{titr} de solution titrante ajouté. Mettre en évidence les points remarquables calculés au point (b) et entourer la zone de la courbe où un effet tampon est attendu.
- I.3. L'acide tartrique HOOC-(CHOH)₂-COOH, noté " TH₂ ", est le principal acide du vin, auquel il impose un *pH* compris entre 3,5 et 4,0. C'est un diacide dont les deux pK_a ont pour valeurs 3,13 et 4,31. Par commodité, on notera l'anion hydrogéno-tartrate HOOC-(CHOH)₂-COO⁻ par " TH⁻" et le dianion tartrate ⁻OOC-(CHOH)₂-COO⁻ par " T²⁻".
 - a) Ecrire les équilibres acide-base propres à cet acide en solution aqueuse.
 - b) On titre une solution aqueuse d'acide tartrique de concentration analytique $c_0 = 0.1$ mol L⁻¹, et de volume $V_0 = 100$ mL par ajout de volumes croissants V_{titr} d'une solution aqueuse d'hydroxyde de sodium NaOH de concentration $c_b = 0.5$ mol·L⁻¹. Calculer le pH de la solution pour $V_{titr} = 0$ mL, 10 mL, 20 mL, 30 mL et 40 mL.
 - c) Représenter graphiquement la courbe de titrage $pH = f(V_{titr})$. Mettre en évidence les points remarquables calculés au point (b) et entourer la ou les zone(s) de la courbe où un effet tampon est attendu.
- **I.4.** La glycine est un acide aminé qui a pour formule H_2N-CH_2-COOH . En solution aqueuse, elle comporte deux fonctions susceptibles d'échanger un proton avec les molécules d'eau. La constante d'acidité de la fonction carboxylique -COOH est $pK_{a1} = 2,4$, alors que la constante de basicité du groupe amine $-NH_2$ est $pK_{b2} = 4,3$.
 - a) Écrire les deux équations d'équilibre acide-base correspondantes.
 - b) On met en solution dans l'eau de la glycine sous sa forme diacide à raison d'une concentration analytique $c_a = 10^{-1}$ M. Quel est la valeur du pH de la solution ?
 - c) On met en solution dans l'eau de la glycine sous forme de glycinate de sodium à raison d'une concentration analytique $c_a = 10^{-1}$ M. Quel est la valeur du pH?
 - d) On considère une solution aqueuse de glycine neutre, suffisamment concentrée pour que l'on puisse négliger la concentration des ions H^+ et OH^- provenant de l'autoprotolyse de l'eau. Quel est le pH de cette solution ?

- **I.5**. Un échantillon de 50,0 mL d'une solution aqueuse d'acide citrique est titré à une température T_2 par une solution de NaOH 0,10 M. La courbe de titrage expérimentale est représentée ci-dessous. Les trois pK_a de l'acide citrique à T_1 = 20°C sont 3,13, 4,76 et 6,40.
 - a) Mettre en évidence sur la courbe les trois points d'équivalence et déterminer la concentration analytique c_a de l'acide.
 - b) Que peut-on conclure de la température T_2 à laquelle le titrage a été effectué ?

Réponses

- I.1. bH = 5.00.
- I.2. a) $c_0 (NH_4OH) = 3,66 \times 10^{-2} M$;

b) pH
$$(V_{titr} = 0) = 10,86$$
; pH $(V_{titr} = V_{\xi}) = 5,41$; pH $(V_{titr} = 0,5 \cdot V_{\xi}) = 9,15$; pH $(V_{titr} = 2 V_{\xi}) = 1,83$.

Dans ce dernier cas, le volume de la solution ne peut pas être considéré comme constant au cours du titrage. Le volume total V de la solution au point d'équivalence et pour $V_{titr} = 2 \ V_{\xi}$ doit tenir compte du volume de solution titrante ajouté : $V = V_0 + V_{titr}$.

- I.3. a) $TH_2 \rightleftharpoons TH^- + H^+$ $TH^- \rightleftharpoons T^{2-} + H^+$
 - b) $pH(V_{titr} = 0) = 2,1$; $pH(V_{titr} = 10 \text{ mL}) = 3,1$; $pH(V_{titr} = 20 \text{ mL}) = 3,7$; $pH(V_{titr} = 30 \text{ mL}) = 4,3$; $pH(V_{titr} = 40 \text{ mL}) = 8,6$.
- I.4. a) $H_3N^+-CH_2-COOH \implies H_3N^+-CH_2-COO^- + H^+ + H_3N^+-CH_2-COO^- \implies H_2N-CH_2-COO^- + H^+$
 - b) pH = 1,7; c) pH = 11,35; d) pH = 6,05.
- I.5. a) $c_a = 5.3 \times 10^{-3} \text{ M}$; b) $T_2 > 20^{\circ}\text{C}$.