

CH-110 Advanced General Chemistry I

Prof. A. Steinauer angela.steinauer@epfl.ch

Housekeeping notes

- You are allowed to write your answers in French on the exam.
- Exercises marked with **"requires calculus"** are not part of the material tested at the exam.
- SESSION ID: 161855

Radial distribution function vs. Radial wavefunction?

(1) Radial Wavefunction

- **1. Definition**: The radial wavefunction, often denoted as R(r), is a part of the overall wavefunction $\psi(r,\theta,\varphi)$ for an electron in an atom, specifically in spherical coordinates. It describes how the **probability amplitude** of finding an electron varies with distance r from the nucleus.
- 2. **Mathematical Form**: The radial wavefunction is derived from the solution of the Schrödinger equation for the hydrogen atom (or hydrogen-like atoms). For example, for s-orbital, it is:

$$\psi(r,\theta,\varphi) = \left(\frac{1}{\pi a_0^3}\right)^{\frac{1}{2}} e^{-\frac{r}{a_0}}$$
 where a_0 is the Bohr radius

1. Interpretation: The radial wavefunction itself does not directly give probabilities. It provides the amplitude of the wavefunction that varies with distance from the nucleus.

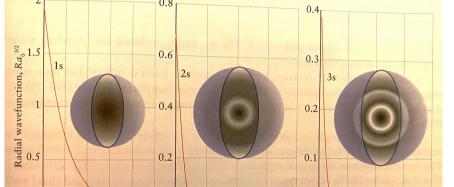


Figure 1D.7

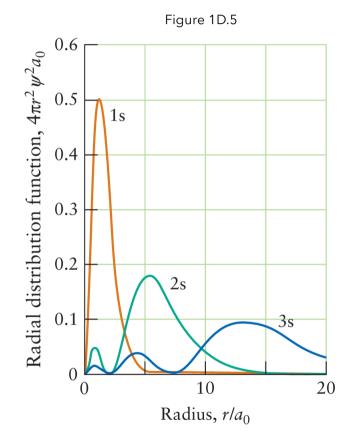
 $Ra_0^{\frac{3}{2}}$: **dimensionless** radial wavefunction

Radius, rla

2

Radius, rla

Radial distribution function vs. Radial wavefunction?


(2) Radial Distribution Function

- 1. **Definition**: The radial distribution function, often denoted as P(r), represents the **probability of finding an electron within a thin spherical shell** between r and $r + \delta r$ from the nucleus, accounting for the volume of that shell.
- **2. Mathematical Form**: The radial distribution function is given by:

$$P(r) = r^2 R^2(r)$$

Here, $R^2(r)$ is the probability density associated with the radial wavefunction, and r^2 accounts for the volume of the spherical shell, which grows with the square of the radius.

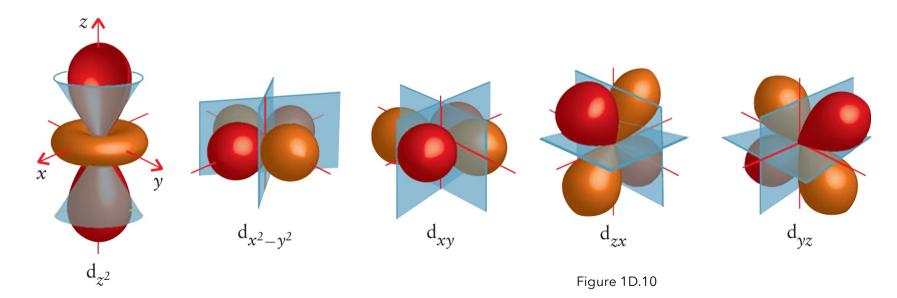
1. Interpretation: The radial distribution function provides a clearer picture of where electrons are likely to be found in space. It indicates the probability of locating an electron at a certain distance r from the nucleus, integrating the radial wavefunction's contributions over all angles.

Radial distribution function vs. Radial wavefunction?

The relationship between the **radial wavefunction** R(r) and the **radial distribution function** P(r) is analogous to the relationship between the **wavefunction** $\psi(x)$ and the **probability density** $\psi(x)^{2}$. Both pairs relate a more abstract, non-physical quantity (the wavefunction) to a physically meaningful probability (the distribution function or probability density).

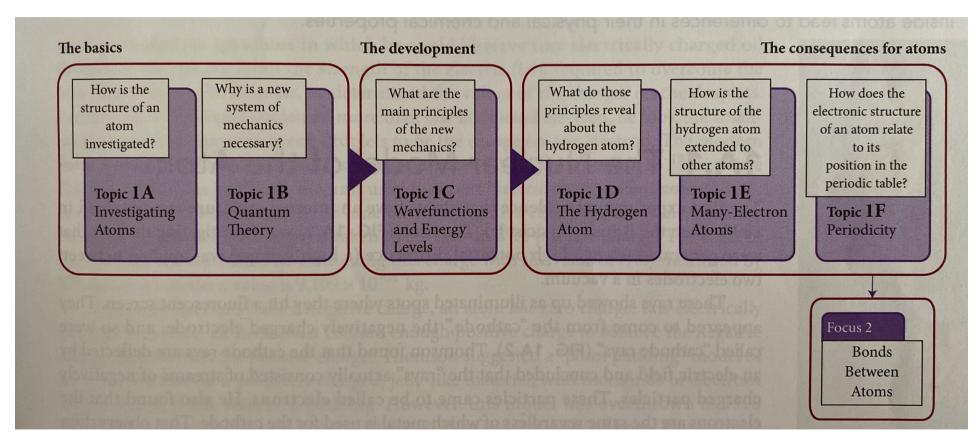
Is there a way to deduce the shapes of the x^2-y^2 and z^2 orbital logically?

Yes, if you solve the Schrödinger equation and look at the individual wavefunctions. However, this is beyond the scope of this class. What you should know that helps you deduce the shapes:


Each d-orbital has two angular nodes (either nodal planes or nodal cones)

- d_{xy} , d_{xz} , and d_{yz} have two nodal planes:
- For d_{xy} , the nodal planes are the x- and y-axes.
- For d_{xz} , the nodal planes are the x- and z-axes.
- For d_{vz} , the nodal planes are the y- and z-axes.
- $d_{x^2-y^2}$ has two angular nodes that are aligned along the diagonal planes y=x and y=-x.
- d_{z^2} has two **conical nodes**, which are cone-shaped regions around the z-axis.

1D.4 The shapes of orbitals


d-orbitals

- Subshell l = 2 consists of **five d-orbitals**
- · Each d-orbital has four lobes, except d_{z^2}

Topic 1D 10

Overview Chapter 1 (Focus 1: Atoms)

Topic 1C 11

1E.2 The building-up principle

Example 1E.1 Predicting the ground-state electron configuration of a heavy atom

- · (a) vanadium
- · (b) lead

Topic 1E 12

Periodicity

Topic 1F.1 Atomic radius

Topic 1F.2 Ionic radius

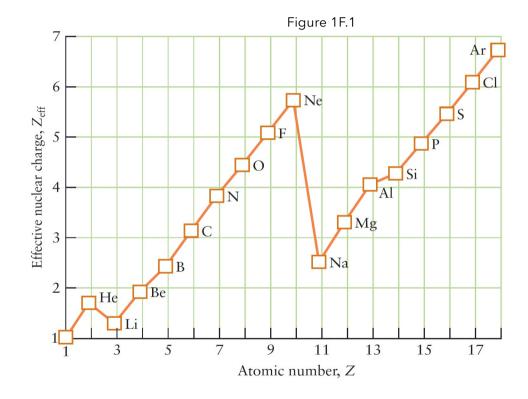
Topic 1F.3 Ionization energy

Topic 1F.4 Electron affinity

Topic 1F.5 Electronegativity

Topic 1F.6 The general properties of the elements

WHY DO YOU NEED TO KNOW THIS MATERIAL?


• The periodic table summarizes trends in the properties of the elements. The ability to predict the properties of an element from its location in the periodic table is a central skill of a chemist. WHAT DO YOU NEED TO KNOW ALREADY?

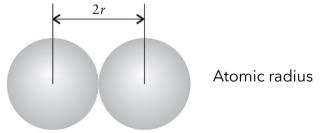
- The structure of the periodic table, the building-up principle (Topic 1E)
- Oxidation state (Fundamentals K)
- Definition of **ionization energy** (Topic1D)

Topic 1D

Effective nuclear charge, Z_{eff}

- The effective nuclear charge is the net positive charge that a valence electron actually feels after accounting for the shielding effect of inner electrons.
- The effective nuclear charge, $Z_{eff}e$, is always smaller than Ze.
- $Z_{eff}e$: To convert Z_{eff} into a **physical** force or **potential energy** that the electron experiences, you multiply Z_{eff} by the elementary charge e.

Shielding

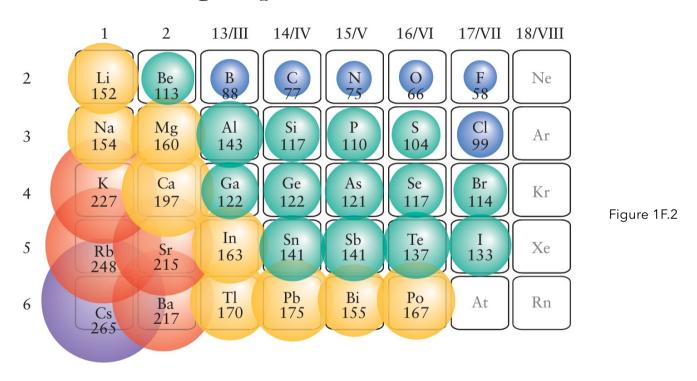


Atomic Radius

Different types of radii

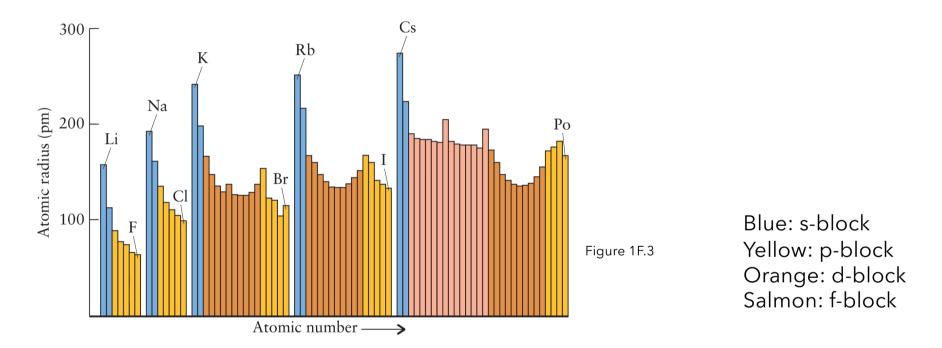
- · Electron clouds don't have sharp boundaries → exact radius of an atom unknown
- **Edge of atom**: when electron density of atom falls off sharply = atomic radius
- The atomic radius of an element is defined as the distance between the centers of neighbouring atoms.
- If the element is a **metal**, its **atomic radius** is taken to be half the distance between the centers of neighbouring atoms in a solid sample

E.g. the distance between two neighbouring nuclei in solid copper is 256 pm, the atomic radius of copper is 128 pm


Different types of radii

If the element is a nonmetal or a metalloid, half the distance between the nuclei of atoms joined by a chemical bond is used; this radius is also called the covalent radius of the elements for reasons explained in Topic 2D.

E.g. the distance between the nuclei in Cl_2 is 198 pm, and so the covalent radius of chlorine is 99 pm.


- If the element is a noble gas, the **van der Waals radius** is used, which is half the distance between the centers of neighbouring atoms in a sample of the gas that has been solidified.
- Atoms are not bonded together in a noble gas, van der Waals radii are generally much larger than covalent radii > not included in discussion of trends

Atomic radii of main-group elements

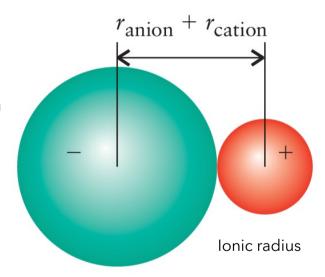
TREND: Atomic radius generally decreases from left to right across a period and increases down a group.

The periodic variation of the atomic radii of the elements

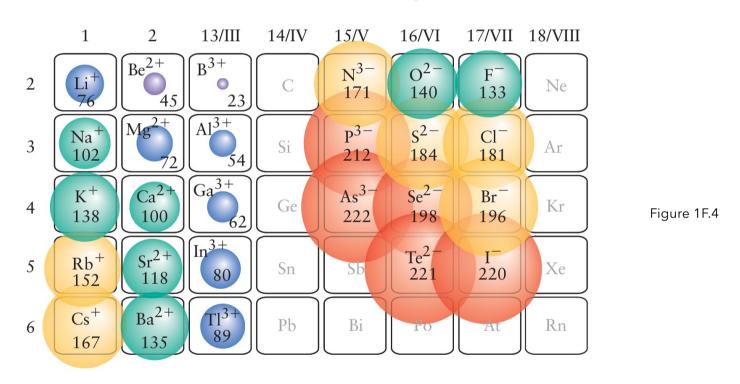
TREND: Atomic radius generally decreases from left to right across a period and increases down a group.

Summary

TREND: Atomic radii generally decrease from left to right across a period as the effective nuclear charge increases, and they increase down a group as successive shells are occupied.

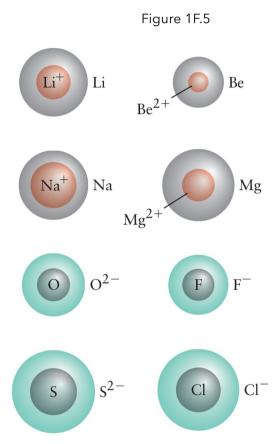

Ionic Radius

Another type of radius: ionic radius


• The radii of ions are **very different** to the radii of their parent ions.

How is it measured:

- Each ion in an ionic solid is surrounded by ions of opposite charge.
- The ionic radius of an element is its share of the distance between neighboring ions in an ionic solid.
- In practice, the radius of the oxide ion is taken to be 140. pm, and the radii of other atoms are calculated on the basis of that value.
- For example, Mg^{2+} and O^{2-} ions in magnesium is 212 pm, the radius of the Mg^{2+} ion is reported as 212 140. pm = 72 pm.


Ionic radii of the ions of the main-group elements

TREND: Cations are smaller than their parent atoms, whereas anions are larger.

Ionic radii of the ions of the main-group elements

- Anions are larger than their parent ions: increased number of electrons in the valence shell plus repulsive effects by electrons on one another.
- **Isoelectronic:** atoms and ions with the same number of electrons.
- Na⁺, F⁻, and Mg²⁺ are isoelectronic with their electronic configuration [He]2s²2p⁶. Radii differ!

TREND: Cations are smaller than their parent atoms, whereas anions are larger.

Example 1F.1 Predicting the relative sizes of ions

· Arrange each of the following pairs of ions in order of increasing ionic radius

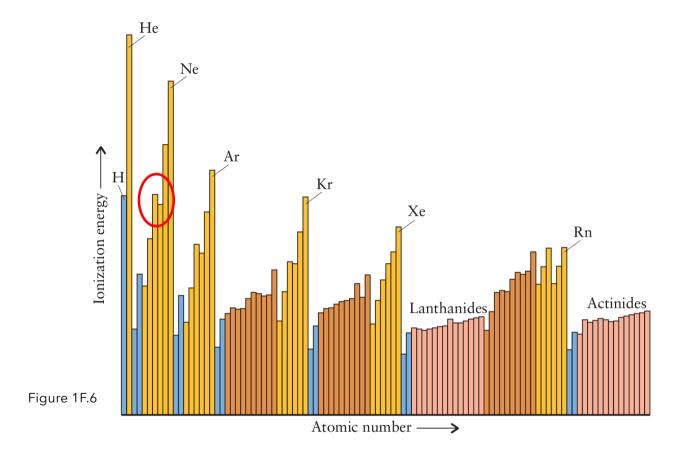
- (a) Mg^{2+} and Ca^{2+}
- (b) O^{2-} and F^{-}

Summary

TREND: Ionic radii generally increase down a group and decrease from left to right across a period. Cations are smaller than their parent atoms, and anions are larger.

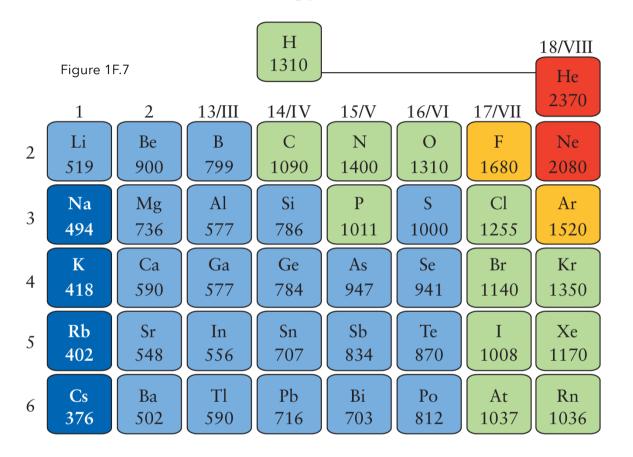
Ionization Energy

- The formation of an ionic compound depends on the **removal of one or more electrons from one atom** (Na to Na⁺) and the transfer of those electrons to another atom (Cl to Cl⁻).
- The **ionization energy**, I, is the miminum energy needed to remove an electron from an atom in the gas phase:


$$X(g) \to X^+(g) + e^-(g)$$
$$I = E(X^+) - E(X)$$

- Where E(X) is the energy of species X.
- Reported as molar quantities (kJ/mol) or in electronvols (eV)

• First ionization energy I_1 : minimum energy needed to remove an electron from a neutral atom in the gas phase


$$Cu(g) \rightarrow Cu^{+}(g) + e^{-}(g)$$

 $energy\ required = I_1(746 \frac{kJ}{mol}, 7.73\ eV)$

- lonization energy is a measure of how difficult it is to remove an electron:
- Elements with low ionization energies can be expected to form cations readily,
 conduct electricity (requires movement of free electrons)
- Elements with high ionization energies are unlikely to form cations and are unlikely to conduct electricity

TREND: First ionization energies typically decrease down a group. First ionization energies generally increase across a period.

- First ionization energies
 increase across period:
 increase in effective
 nuclear charge across
 period.
- Ionization energy of oxygen < nitrogen:
 nitrogen has one electron per p-orbital, oxygen is pairing up 8th electron with other p-electrons, energy goes up

Decrease down group:outermost electrons are

farther and farther away from nucleus, experiencing less nuclear charge.

TREND: First ionization energies typically decrease down a group.

First ionization energies generally increase across a period.

Metallic character

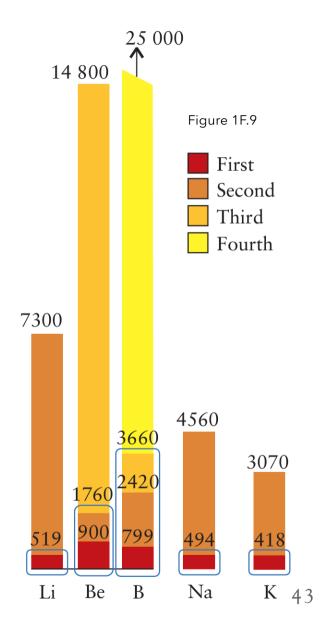
- Low ionization energies
- · Lower left of periodic table
- A block of metal: collection of cations of the element surrounded by a sea of valence electrons that the atoms have lost
- s-block, d-block, f-block, lower left of the p-block can form metallic solids because they can lose electrons easily.
- Elements with high ionization energies are on the upper right of the periodic table

Metal block

Cation

Figure 1F.8

Electron sea


The second ionization energy, I_2

 The minimum energy needed to remove an electron from a singly charged gas-phase cation.

$$Cu^+(g) \to Cu^{2+}(g) + e^-(g)$$

energy required =
$$I_2 \left(1958 \frac{kJ}{mol}, 20.29 \text{ eV}\right)$$

- The second ionization energy is always higher than the first → it takes more energy to remove an electron from a positively charged atom than from a neutral one
- Group 1: $I_2 >> I_1$
- Group 2: $I_2 = I_1$

Summary

TRENDS:

The **first ionization energy** is highest for elements close to helium and is lowest for elements close to cesium.

Second ionization energies are higher than first ionization energies (of the same element) and very much higher if the electron is to be removed from a closed shell.

Metals are found toward the lower left of the periodic table because these elements have low ionization energies and can readily lose their electrons.

Electron Affinity

Ionization energy vs. electron affinity

- · Ionization energy indicates how difficult it is to **remove** an electron from an atom.
- How does the energy change when an electron **attaches** to an atom to form a negative ion (Cl to Cl⁻)?
- The electron affinity, E_{ea} , of an element is the energy released when an electron is added to a gas-phase atom.
- Pos. E_{ea}: energy released when an electron attaches to atom
- Neg. E_{ea}: energy must be supplied to push an electron onto an atom

46

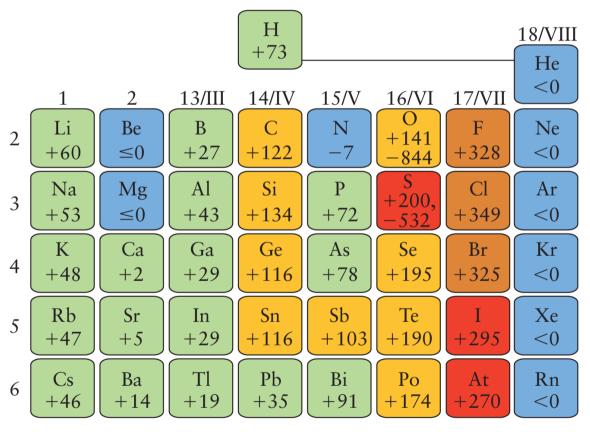
Ionization energy vs. electron affinity

The electron affinity of an element X is defined as

$$X(g) + e^-(g) \rightarrow X^-(g)$$

$$E_{ea}(X) = E(X) - E(X^{-})$$

Where E(X) is the energy of a gas-phase X atom and $E(X^-)$ is the energy of the gas-phase anion.


For instance, the electron affinity of chlorine is the energy released in the process

$$Cl(g) + e^{-}(g) \rightarrow Cl^{-}(g)$$

energy released =
$$E_{ea} \left(349 \frac{kJ}{mol}, 3.63 \text{ eV} \right)$$

Because the electron has a lower energy when it occupies one of the atom's orbitals, the difference $E(Cl) - E(Cl^{-})$ is positive, and the electron affinity of chlorine is positive.

Variation in electron affinity in kJ/mol of main-group elements

TREND: Electron affinities are highest toward the right of the periodic table.

Figure 1F.10 Topic 1F

TRENDs

- TREND: Electron affinities are highest toward the right of the periodic table.
- · Particularly true in the upper right of the periodic table: oxygen, sulfur, halogens
- In these atoms, an incoming electron occupies a p-orbital close to a nucleus with a high effective charge and can experience its attraction quite strongly
- Noble gases have negative electron affinities because any electron added to them must occupy an orbital outside a closed shell and far from the nucleus: this process requires energy, the electron affinity is negative
- Halide (group 17) plus electron builds a closed shell (noble-gas configuration). Second electron
 affinity for halides is strongly negative.
- Group 16 (O or S): two vacancies in its valence shell p-orbitals, can accommodate two additional electrons. First electron affinity positive

Summary

TREND: Elements with the highest electron affinities are those in Groups 16 and 17.