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The Hydrogen Atom
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Topic 1D

Last Tuesday: Topic 1D.1 Energy levels

Last Tuesday: Topic 1D.2 Atomic orbitals

Topic 1D.3 Quantum numbers, shells, and subshells

Topic 1D.4 The shapes of orbitals

Topic 1D.5 Electron spin

Topic 1D.6 The electronic structure of hydrogen: a summary

WHY DO YOU NEED TO KNOW THIS WHAT DO YOU NEED TO KNOW
MATERIAL? ALREADY?
The hydrogen atom is the simplest + Features of spectrum of atomic
atom of all and is used to discuss hydrogen (Topic 1A)

the structures of all atoms. Concepts of wavefunction and

It is therefore central to many energy level in quantum mechanics

explanations in chemistry. (Topic 1C)



1D The hydrogen atom

Last Tuesday: Setting the stage

In Topic 1A, we have seen this puzzle

P 1 1
V=R|—= ——
ni n

withn, = 1,2, ..., andn, =nq +1,ny + 2, ...

Value of Rydberg constant, R = 3.29 x 101°Hz

Why such a pattern and why does R have that value?
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1D.1 Energy levels

Last Tuesday: Relationship to Bohr frequency condition

Allowed energy levels in the hydrogen atom (Schrédinger’s solution):

hR
n

E, =

N

4
__ _mee . _
R = TER: withn=1,2, ..

Bohr frequency condition:

hv = AE

Insert into previous equation. In the case of the hydrogen atom, if the electron falls from a level with quantum number n, to one

with quantum number ny, then:

hR hR 1 1 ]
hv=AE: —_2 - _2 =hR 2—_2 Wlth ny = 1,2,...,”2 =n1+1,n1+2,
n; ni ny n;

Compare to previous Rydberg equation:

1 1
v=R <_2 —_2> with ny = 1,2, e, Ny = Ny + 1,7’11 + 2,
ny n;
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Topic 1D

1D.1 Energy levels

Last Tuesday: Finally, it makes sense

Rydberg constant

mee*

B 8h3ef

=3.29 x 1015 HZ

Imagine Schrodinger calculating this constant!

You can now see:

Balmer series, for example, arises from transitions starting

atn, = 3,4,5...and all ending at nq = 2

Lyman series: n, = 2,3,4,5...tony=1

—§h‘](

Balmer

hR.

A=

Lyman

Energy —>

—hR

Figure 1D.1 10



Topic 1D

1D.1 Energy levels
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If I wanted to calculate the wavelength of the line highlighted in
green, what would be the two values of n; and n, I would use?

A. ni=5and ny,=3 39%

B. ni=3andn,=4

C. nq=3andn,=5
(correct answer)

D. ni=5and n,=2

Balmer
series

954.6

Infrared Visible

Wavelength (nm)

Lyman series

121.6
102.6
97.3

Ultraviolet




Topic 1D

Solution

Paschen Series Overview:

The Paschen series involves transitions where the electron falls to the third energy level

(n1=3).
The initial energy level (n,) can be 4,5/6,...
For the Second Line of the Paschen Series:

First Line:

Transition from n,=4 to n,=3 (this corresponds to the first line in the Paschen series).

Second Line:

Transition from n,=5 to n;=3 (this is the second line in the Paschen series).
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Quantum Numbers, Shells,
and Subshells

Topic 1D.3

14



Topic 1D

1D.3 Quantum numbers, shells, and subshells

Three quantum numbers for the hydrogen atom

When the Schrodinger equation is solved for the hydrogen atom, three quantum
numbers are needed to specify each wavefunction:

1. Principal quantum number n is related to the size and energy of the orbital
2. Quantum number [ is related to its shape

3. Quantum number m; is related to its orientation in space
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Topic 1D

1D.3 Quantum numbers, shells, and subshells

Principal quantum number n

Principal quantum number n is related to the size and energy of the orbital, all
orbitals with the same principal quantum number have the same energy, belong to

the same shell of the atom.
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Topic 1D

1D.3 Quantum numbers, shells, and subshells

Orbital angular quantum number /

Quantum number [l is related to its shape

It can take on the following values:

[=0,1,2,..,.n—-1

For example, forn = 3, [ can have three values 0,1, and 2.

Orbitals with principal number n are divided into subshells [:

Forn = 1: there is only one subshell Il =0
Forn = 2: there are two subshellsl =0, 1

For n = 3: there are three subshells 1 =10,1, 2
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1D.3 Quantum numbers, shells, and subshells

s-, p-, and d-orbitals

[ = 0: s-orbital (origin: s-orbital spectroscopic lines described as “sharp”)
[ = 1: p-orbital (origin: p-orbital spectroscopic lines described as “principal”)

| = 2: d-orbital (origin: d-orbital spectroscopic lines described as “diffuse”)

T O O R T

Orbital type s

Higher values of [ are possible (g-, h-, ... orbitals) are possible, but not often needed

in practice.

Topic 1D 18



Topic 1D

1D.3 Quantum numbers, shells, and subshells

Orbital angular quantum number /

l is used to calculate orbital angular momentum of the electron, a measure of the rate

(in classical terms) at which the electron circulates around the nucleus.

Orbital angular momentum = \/.l(l + 1)h

An electron in an s-orbital for which [ = 0 has zero orbital angular momentum (not

circulating around nucleus, and evenly distributed around it).

An electron in a p-orbital for which [ = 1 has a non-zero orbital angular

momentum of magnitude v2# (can be thought of as circulating around nucleus).

An electron in a d-orbital (I = 2) has a higher angular momentum (vV/6#) and an

electron in an f-orbital (I = 3) an even higher one (v/12#) and so on.
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1D.3 Quantum numbers, shells, and subshells

Magnetic quantum number my;

Distinguishes the individual orbitals within a subshell

Can take positive and negative integer values:

ml=l,l—1,...,—l

E.g.
p-orbital: l =1 and m; = +1,0, —1: there are three p-

orbitals in a subshell with [ = 1.

d-orbital: I =2 and m; = +2,+1,0,—-1, -2

Topic 1D
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Figure 1D.3
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How many subshells are there for quantum number n?

A. n-1 subshells

B. n subshells (correct)
C. n?subshells

Number of orbitals per
shell: n?




1D.3 Quantum numbers, shells, and subshells

: N &
Magnetic quantum number my; RO &
" N . . [ =2 o]l o [[+1]f+2
Specifies the orientation of the orbital motion of the electron d |
l
Orbital angular momentum around an arbitrary axis is equal to =3l 121 __1_} 0 l+1]3p
mlh m
: : I=0
For example if m; = +1, then the orbital angular momentum T e [ 3s
around an arbitrary axis is +h, whereas if m; = —1, the orbital "
angular momentum around the same arbitrary axis is —A. R __1W‘ 0 H‘HH 2p
p
m
o L] L] L] o . — l
Direction of motion is opposite: the electron in one state n=2 —
circulates clockwise around the chosen axis, in the other | o 2
m
counterclockwise. l
I=0
. . . . n=1H —1 0 | 1s
m; = 0, the electron is not circulating around the selected axis s -
)
but, at a given radius, evenly distributes around it. Figure 10.3
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1D.3 Quantum numbers, shells, and subshells

Summary

Atomic orbitals are designated by the quantum numbers n, I, and m; and fall into shells

and subshells.

TABLE 1.3 Quantum Numbers for Electrons in Atoms

Name Symbol Values Specifies Indicates
principal n 1,2,... shell size
orbital angular [ 0,1,...,n—1 subshell: shape
momentum?® [=0,1,2,3,4,...
s, p,d, f, g, ...
magnetic m Ll—-1,...,—] orbitals of subshell orientation
Chapter 1D.5: spin magnetic m, i *1 spin state spin direction

*Also called the azimuthal quantum number.
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The Shapes of Orbitals

Topic 1D.4
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1D.4 The shapes of orbitals

s-orbitals

A combination of three quantum numbers specifies an individual orbital, acts as an

"address” of the electron that "occupies” it (meaning the electron has a probability

distribution given by its wavefunction)
E.g. an electron in the ground state of a hydrogen atom hasn =1,l = 0,m; = 0.
Because | = 0, the ground-state wavefunction is an example of an s-orbital (1s)
Each shell has one s-orbital

The s-orbital with quantum number n is called the ns orbital (1s, 2s, 3s orbital and

so on).
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1D.4 The shapes of orbitals

s-orbitals are spherically symmetrical

All s-orbitals are independent of the angles 6 and ¢: spherically symmetrical

The probability density of an electron at the point (1,8, ¢) when it is in an 1s—orbital

is given by the square of the corresponding wavefunction (given earlier):

1 2
Y2(r, 0, p)=——e 9o
Ta;

In principle, the cloud representing the probability density never goes to zero, no
matter the value of r. However, there is virtually no chance of finding an electron
farther from the nucleus than about 250 pm, so for practical purposes, the atom is very

small.
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1D.4 The shapes of orbitals

s-orbitals are spherically symmetrical

High density of the cloud at nucleus: electron in an s- Probability
—__ density

orbital has a nonzero probability of being found right

at the nucleus.

Why? Because there is no orbital angular momentum to

fling the electron away.

Figure 1D.4
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Topic 1D

1D.4 The shapes of orbitals

Analogy: angular momentum to swinging ball on string.

Imagine a ball attached to a string,
representing an electron in a p-orbital.
When you swing this ball around in a
circle, it has a certain angular momentum.
The faster you swing it, the farther it
moves away from the center. If you try to
bring the ball closer to the center, it
becomes difficult; the tension in the string
and the motion cause the ball to naturally
stay at a distance from the center, similar
to how a p-orbital behaves with a non-

zero angular momentum.
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1D.4 The shapes of orbitals
Example 1D.1: Calculating the probability of finding an electron at a

certain location
Suppose an electron is in a 1s-orbital of a hydrogen atom.

What is the probability of finding the electron ina small region a distance a, from

the nucleus relative to the probability of finding it in the small region located

right at the nucleus?
Anticipate: lower probability (exponential decay)

Plan: compare the probability densitites at the two locations: ratio of the squares

of the wavefunctions at the two locations.

For 1s: Y(r,0,¢p) becomes Y (r)
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Topic 1D

1D.4 The shapes of orbitals

Example 1D.1: Calculating the probability of finding an electron at a
certain location

SOLVE
The ratio of the probability that the electron is found at the 4 ™\
nucleus or at r = g is:
Probability density at 7 = a, P (ay) o2
Probability density atr =0 P> (0)
N r

From ¢*(r, 6, ¢) = (1/wa§)e_2r/“‘),

C_Z
it i
Wag)  (Umag)e >/

= =e2=0.14
PO U

1

Evaluate As expected, the probability of finding the electron in a small region at a dis-
tance ag from the nucleus is lower than at the nucleus itself: the probability is only 14% of
that of finding the electron in a region of the same volume located at the nucleus.

Ratio becomes:
e % =0.018

_2X3a0

Ratio becomes:
e~ ® =0.0025
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1D.4 The shapes of orbitals

The radial distribution function

Figure 1D.5

o
o
|

Value of 2 lets you predict the probability of finding an electron at a given
region at distance r from the nucleus

<
w:

Maybe you want to know: the total probability of finding an electron at a
distance rin all possible directions: you need the radial distribution function.

e
~

Analogy: for the population on earth, the radial distribution function is zero up
to about 6400 km from the center of the earth, rises sharply, and then falls back
to almost zero (except people climbing mountains or flying in airplanes.

The probability that an electron will be found in a thin spherical shell around the

o
bo

nucleus with radius r and thickness 8r is given by P(r)ér with
P(r) =1r%R%(r)

e
[N

. R . L
For s-orbitals, 1y = RY =—, so R? = 4my? and this expression is then the same
212

Radial distribution function, 4nr? y?a,
-
(O8]

as

O

()

10 20
Radius, 7/a

P(r) = 4nr2y?(r)

This special form applies only to s-orbitals, whereas the previous form applies to all
orbitals.
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1D.4 The shapes of orbitals

The radial distribution function

Figure 1D.5

o
o
|

Value of 92 lets you predict the probability of finding an electron at a
given region at distance r from the nucleus

<
w:

Maybe you want to know: the total probability of finding an electron at a

distance rin all possible directions: you need the radial distribution

e
~

function.

Analogy: for the population on earth, the radial distribution function is
zero up to about 6400 km from the center of the earth, rises sharply, and
then falls back to almost zero (except people climbing mountains or flying

Radial distribution function, 4nr? y?a,
-
(O8]

in airplanes. 0.2
The probability that an electron will be found in a thin spherical shell 0.1
around the nucleus with radius r and thickness ér is given by P(r)dr with
P(r) = 4nr2yY?(r) 0
0 10 20

This special form applies only to s-orbitals, whereas the previous form applies

to all orbitals. Radius, 7/a,
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Topic 1D

1D.4 The shapes of orbitals

The radial distribution function

It's important to distinguish the radial distribution
function from the wavefunction and its square, the

probability density:

The wavefunction itself tells you, through
Y4(r,0,9)6V, the probability of finding the electron
in the small volume 6V at a particular location

specified by r, 8, and ¢.

The radial distribution function tells you, through
P(r)ér, the probability of finding the electron

anywhere in the spherical shell between r and r + 6r

Radial distribution function, 4nr? y?a,

&
o)

<
(N

N
~

e
W

o
bo

g
p—

Figure 1D.5

Radius, 7/ay
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Topic 1D

1D.4 The shapes of orbitals

The radial distribution function

Note that for all orbitals, except s-orbitals, the radial distribution function
P(r) is zero at the nucleus simply because the region in which the electron

is being sought has shrunk to zero size.

The probability density for an s-orbital is nonzero a the nucleus, and in
the radial distribution, it is multiplied by a volume, 4nr26r, which becomes

zero at the nucleus, atr = 0.

As 7 increases, the value of 4nr? increases (the shell is getting bigger),
but for the 1s-orbital, the square of the wavefunction, 1?2, falls toward zero

as rincreases.

As a result, the product of 4mr? and 2 starts off at zero, goes through a
maximum, and then declines to zero (Figure 1D.5)

The value of P(r) turns out to be greatest at a,, the Bohr radius.

Therefore the Bohr radius corresponds to the radius at which an electron in

a 1s-orbital in a hydrogen atom is most likely to be found.

Radial distribution function, 4nr? y?a,

e
~

e
W

o
bo

e
p—

O

Figure 1D.5

()

10 20
Radius, 7/a
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Topic 1D

1D.4 The shapes of orbitals

Boundary surface

Instead of drawing an orbital as a cloud, chemists ususally draw a boundary surface:
A smooth surface that encloses most of the cloud.

+ easier to draw

- does not give the best picture of an atom

An atom has indefinite, or «fuzzy», edges and is not as smooth as a boundary

surface might suggest.

Boundary surface is useful because an electron is most likely to be found inside it.
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1D.4 The shapes of orbitals

Boundary surface of the 1s-orbital

Keep in mind:
The probability density inside the boundary surface is

not uniform.

An s-orbital has a spherical boundary surface

because the electron cloud is spherical.
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1D.3 Quantum numbers, shells, and subshells

Boundary surfaces of higher-order s-orbitals

Figure 1D.7

The s-orbitals of higher
energy have spherical
boundary surfaces of greater
diameter, the average
distance of the electron from

the nucleus also increases.

They also have a more
complicated radial variation,
with radial nodes, radii at

which the wavefunction

passes through zero.
Topic 1D



Topic 1D

1D.4 The shapes of orbitals

Boundary surfaces of p-orbitals

Two lobes with signs + and - to signify
that wavefunction has two different signs

in these two regions

E.g. 2p, orbital is proportional to cos(6):
as 8 changes from 0 to 7, cos(6) changes

from +1 through 0 to —1.

Radial wavefunction, Ra,,

0.15

<
p—

0.05

Figure 1D.8

Nodal plane

J )

5 10
Radius, 7/a

15
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Topic 1D

1D.4 The shapes of orbitals

Figure 1D.8

0.15 —
Nodal planes Nodal plane

The two lobes of a p-orbital are separated by a 0
nodal plane, cuts through the nucleus, ¥ = 0.

<
p—
|

The wavefunction changes sign on passing
through this plane.

Also called angular nodes because they occur
when the angular wavefunction passes through

0.05 +

Zero.

Radial wavefunction, Ra,
|

A p-electron will never be found at the nucleus

because the wavefunction is zero there.

Electrons in p-orbitals have nonzero angular

0 | |

momentum, which flings them away from the 0 5 10

nucleus. Radius, 7/a

15
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1D.4 The shapes of orbitals

Figure 1D.9

p-orbitals

Three p-orbitals in each subshell of an

atom

Quantum numbers m; = +1,0, -1

Chemists refer to them according to the
axes along which the lobes lie: p,-, p,-, p.-

orbitals

p,-orbital has m; = 0

Px-, Py-orbitals have m; = £1 Nodal plane
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Topic 1D

1D.4 The shapes of orbitals

d-orbitals

Subshell I = 2 consists of five d-orbitals

Each d-orbital has four lobes, except d 2

Figure 1D.10
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Topic 1D

f-orbitals

Subshell I = 3 consists of
seven f-orbitals.

Very complex appearance.

Detailed form will not be
discussed again in this
course.

Their existence is important
for understanding the
periodic table, the
presence of the
lanthanoids and actinoids
and the properties of the

later d-block elements.

1D.4 The shapes of orbitals

z

SRRH

523 = 3212 Sxz2 - xr? 2c® - zy
y3 = 3yx2 Syz? - yr? x3 - 3xy?
Figure 1D.11
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Topic 1D

1D.4 The shapes of orbitals

Summary

The shape of an atomic orbital depends on its quantum numbers and can be depicted
by a boundary surface. The radial distribution function expresses the probability of

finding an electron at a given radius regardless of its angular momentum.
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