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The Hydrogen Atom
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Last Tuesday: Topic 1D.1 Energy levels
Last Tuesday: Topic 1D.2 Atomic orbitals
Topic 1D.3 Quantum numbers, shells, and subshells
Topic 1D.4 The shapes of orbitals
Topic 1D.5 Electron spin
Topic 1D.6 The electronic structure of hydrogen: a summary

W H Y  D O  Y O U  N E E D  T O  K N O W  T H I S  

M A T E R I A L ?  

� The hydrogen atom is the simplest 

atom of all and is used to discuss 

the structures of all atoms. 

� It is therefore central to many 

explanations in chemistry.

W H A T  D O  Y O U  N E E D  T O  K N O W  

A L R E A D Y ?

� Features of spectrum of atomic 

hydrogen (Topic 1A)

� Concepts of wavefunction and 

energy level in quantum mechanics 

(Topic 1C)
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1D The hydrogen atom

Last Tuesday: Setting the stage

In Topic 1A, we have seen this puzzle

𝜈 = 𝑅
1
𝑛!"

−
1
𝑛""

𝑤𝑖𝑡ℎ 𝑛! = 1,2, … , 𝑎𝑛𝑑 𝑛" = 𝑛! + 1, 𝑛! + 2, …

Value of Rydberg constant, 𝑅 = 3.29 x 10!#𝐻𝑧

� Why such a pattern and why does 𝑅 have that value?
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1D.1 Energy levels

Last Tuesday: Relationship to Bohr frequency condition

Allowed energy levels in the hydrogen atom (Schrödinger’s solution):

𝐸! = −
ℎ𝑅
𝑛"

𝑅 = #!$"

%&#'$%
 with 𝑛 = 1, 2, …

Bohr frequency condition:
ℎ𝜈 = Δ𝐸

Insert into previous equation. In the case of the hydrogen atom, if the electron falls from a level with quantum number 𝑛" to one

with quantum number 𝑛(, then:

ℎ𝜈 = Δ𝐸 = −
ℎ𝑅
𝑛""

−
ℎ𝑅
𝑛("

= ℎ𝑅
1
𝑛("

−
1
𝑛""

𝑤𝑖𝑡ℎ 𝑛( = 1,2, … , 𝑛" = 𝑛( + 1, 𝑛( + 2, …

Compare to previous Rydberg equation:

𝜈 = 𝑅
1
𝑛("

−
1
𝑛""

𝑤𝑖𝑡ℎ 𝑛( = 1,2, … , 𝑛" = 𝑛( + 1, 𝑛( + 2, …
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1D.1 Energy levels

Last Tuesday: Finally, it makes sense

Rydberg constant

𝑅 =
𝑚$𝑒%

8ℎ&𝜀'"
= 𝟑. 𝟐𝟗 × 𝟏𝟎𝟏𝟓 𝑯𝒛

� Imagine Schrödinger calculating this constant!

You can now see:

� Balmer series, for example, arises from transitions starting

at 𝑛" = 3, 4, 5 … and all ending at 𝒏𝟏 = 𝟐

� Lyman series: 𝑛" = 2, 3, 4, 5 … to 𝒏𝟏= 𝟏

Topic 1D Figure 1D.1



1D.1 Energy levels

Last Tuesday: Finally, it makes sense

Topic 1D Figure 1D.1

Figure 1A.10



If I wanted to calculate the wavelength of the line highlighted in 
green, what would be the two values of n1 and n2 I would use?

A. n1= 5 and n2= 3 
B. n1= 3 and n2= 4 
C. n1= 3 and n2= 5 

(correct answer) 
D. n1= 5 and n2= 2 



Solution

Paschen Series Overview:

The Paschen series involves transitions where the electron falls to the third energy level 

(n1=3).

The initial energy level (n2) can be 4,5,6,…

For the Second Line of the Paschen Series:

First Line:

Transition from n2=4  to n1=3 (this corresponds to the first line in the Paschen series).

Second Line:

Transition from n2=5 to n1=3 (this is the second line in the Paschen series).
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Quantum Numbers, Shells, 
and Subshells
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1D.3 Quantum numbers, shells, and subshells

Three quantum numbers for the hydrogen atom

When the Schrödinger equation is solved for the hydrogen atom, three quantum 

numbers are needed to specify each wavefunction:

1. Principal quantum number 𝑛 is related to the size and energy of the orbital

2. Quantum number 𝑙 is related to its shape

3. Quantum number 𝑚* is related to its orientation in space
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1D.3 Quantum numbers, shells, and subshells

Principal quantum number 𝑛

Principal quantum number 𝑛 is related to the size and energy of the orbital, all 
orbitals with the same principal quantum number have the same energy, belong to 

the same shell of the atom.
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1D.3 Quantum numbers, shells, and subshells

Orbital angular quantum number l

Quantum number 𝑙 is related to its shape

It can take on the following values:

𝑙 = 0, 1, 2, … , 𝒏 − 𝟏

For example, for 𝑛 = 3, 𝑙 can have three values 0, 1, and 2.

Orbitals with principal number 𝑛 are divided into subshells 𝑙:

 For 𝑛 = 1: there is only one subshell 𝑙 = 0

 For 𝑛 = 2: there are two subshells 𝑙 = 0, 1

 For 𝑛 = 3: there are three subshells 𝑙 = 0, 1, 2

Topic 1D



1D.3 Quantum numbers, shells, and subshells

s-, p-, and d-orbitals

𝑙 = 0: s-orbital (origin: s-orbital spectroscopic lines described as “sharp”)

𝑙 = 1: p-orbital (origin: p-orbital spectroscopic lines described as “principal”)

𝑙 = 2: d-orbital (origin: d-orbital spectroscopic lines described as “diffuse”)

Higher values of 𝑙 are possible (g-, h-, … orbitals) are possible, but not often needed 

in practice.

Topic 1D

Value of l 0 1 2 3

Orbital type s p d f



1D.3 Quantum numbers, shells, and subshells

Orbital angular quantum number l

𝑙 is used to calculate orbital angular momentum of the electron, a measure of the rate 

(in classical terms) at which the electron circulates around the nucleus.

𝑂𝑟𝑏𝑖𝑡𝑎𝑙 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 𝑙 𝑙 + 1 ℏ

� An electron in an s-orbital for which 𝑙 = 0 has zero orbital angular momentum (not 

circulating around nucleus, and evenly distributed around it).

� An electron in a p-orbital for which 𝑙 = 1 has a non-zero orbital angular 

momentum of magnitude 2ℏ (can be thought of as circulating around nucleus).

� An electron in a d-orbital (𝑙 = 2) has a higher angular momentum ( 6ℏ) and an 

electron in an f-orbital (𝑙 = 3) an even higher one ( 12ℏ) and so on.
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1D.3 Quantum numbers, shells, and subshells

Magnetic quantum number ml

Distinguishes the individual orbitals within a subshell

Can take positive and negative integer values:

𝑚* = 𝑙, 𝑙 − 1, … , −𝑙

E.g. 

� p-orbital: 𝑙 = 1 and 𝑚* = +1, 0, −1: there are three p-

orbitals in a subshell with 𝑙 = 1.

� d-orbital: 𝑙 = 2 and 𝑚* = +2, +1, 0, −1, −2

Topic 1D
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How many subshells are there for quantum number n?

A. n-1 subshells
B. n subshells (correct)
C. n2 subshells

Number of orbitals per 
shell: n2



1D.3 Quantum numbers, shells, and subshells

Magnetic quantum number ml

� Specifies the orientation of the orbital motion of the electron

� Orbital angular momentum around an arbitrary axis is equal to

𝑚1ℏ

� For example if 𝑚1 = +1, then the orbital angular momentum

around an arbitrary axis is +ℏ, whereas if 𝑚1 = −1, the orbital 

angular momentum around the same arbitrary axis is −ℏ.

� Direction of motion is opposite: the electron in one state

circulates clockwise around the chosen axis, in the other

counterclockwise. 

� 𝑚1 = 0, the electron is not circulating around the selected axis

but, at a given radius, evenly distributes around it.

Topic 1D
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1D.3 Quantum numbers, shells, and subshells

Summary

Atomic orbitals are designated by the quantum numbers n, l, and ml and fall into shells 

and subshells.

Topic 1D
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The Shapes of Orbitals
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1D.4 The shapes of orbitals

s-orbitals

A combination of three quantum numbers specifies an individual orbital, acts as an 

“address” of the electron that ”occupies” it (meaning the electron has a probability 

distribution given by its wavefunction)

� E.g. an electron in the ground state of a hydrogen atom has 𝑛 = 1, 𝑙 = 0, 𝑚* = 0.

� Because 𝑙 = 0, the ground-state wavefunction is an example of an s-orbital (1s)

� Each shell has one s-orbital

� The s-orbital with quantum number n is called the ns orbital (1s, 2s, 3s orbital and 

so on).
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1D.4 The shapes of orbitals

s-orbitals are spherically symmetrical

All s-orbitals are independent of the angles 𝜃 and 𝜙: spherically symmetrical

The probability density of an electron at the point (r, 𝜃, 𝜙) when it is in an 1s—orbital 

is given by the square of the corresponding wavefunction (given earlier):

Ψ" r, 𝜃, 𝜙 =
1
𝜋𝑎'&

𝑒+
",
-!

In principle, the cloud representing the probability density never goes to zero, no

matter the value of r. However, there is virtually no chance of finding an electron

farther from the nucleus than about 250 pm, so for practical purposes, the atom is very

small.
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1D.4 The shapes of orbitals

s-orbitals are spherically symmetrical

High density of the cloud at nucleus: electron in an s-

orbital has a nonzero probability of being found right

at the nucleus.

Why? Because there is no orbital angular momentum to

fling the electron away.

Topic 1D

Figure 1D.4



1D.4 The shapes of orbitals

Analogy: angular momentum to swinging ball on string.

Imagine a ball attached to a string, 

representing an electron in a p-orbital. 

When you swing this ball around in a 

circle, it has a certain angular momentum. 

The faster you swing it, the farther it 

moves away from the center. If you try to 

bring the ball closer to the center, it 

becomes difficult; the tension in the string 

and the motion cause the ball to naturally 

stay at a distance from the center, similar 

to how a p-orbital behaves with a non-

zero angular momentum.
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1D.4 The shapes of orbitals
Example 1D.1: Calculating the probability of finding an electron at a 
certain location

Topic 1D

Suppose an electron is in a 1s-orbital of a hydrogen atom.

What is the probability of finding the electron ina small region a distance 𝒂𝟎  from 

the nucleus relative to the probability of finding it in the small region located 

right at the nucleus?

Anticipate: lower probability (exponential decay)

Plan: compare the probability densitites at the two locations: ratio of the squares 

of the wavefunctions at the two locations.

For 1s: 𝜓 𝑟, 𝜃, 𝜙  becomes 𝜓(𝑟)



1D.4 The shapes of orbitals
Example 1D.1: Calculating the probability of finding an electron at a 
certain location

Topic 1D

At 𝑟 = 2𝑎2:

Ψ3 r =
1
𝜋𝑎24

𝑒5
3×37!
7!

Ratio becomes: 
𝑒58 = 0.018

At 𝑟 = 3𝑎2:

Ψ3 r =
1
𝜋𝑎24

𝑒5
3×47!
7!

Ratio becomes:
𝑒59 = 0.0025



1D.4 The shapes of orbitals

The radial distribution function

Topic 1D

� Value of 𝜓"  lets you predict the probability of finding an electron at a given 

region at distance r from the nucleus 

� Maybe you want to know: the total probability of finding an electron at a 

distance r in all possible directions: you need the radial distribution function.

� Analogy: for the population on earth, the radial distribution function is zero up 

to about 6400 km from the center of the earth, rises sharply, and then falls back 

to almost zero (except people climbing mountains or flying in airplanes.

� The probability that an electron will be found in a thin spherical shell around the 

nucleus with radius 𝑟 and thickness 𝛿𝑟 is given by 𝑃(𝑟)𝛿𝑟 with

𝑃 𝑟 = 𝑟"𝑅" 𝑟

� For s-orbitals, 𝜓 = 𝑅𝑌 = )

"*
&
%
, so 𝑅" = 4𝜋𝜓"  and this expression is then the same 

as

𝑃 𝑟 = 4𝜋𝑟"𝜓"(𝑟)

This special form applies only to s-orbitals, whereas the previous form applies to all 

orbitals. 

Figure 1D.5



1D.4 The shapes of orbitals

The radial distribution function

Topic 1D

� Value of 𝜓" lets you predict the probability of finding an electron at a 

given region at distance r from the nucleus 

� Maybe you want to know: the total probability of finding an electron at a 

distance r in all possible directions: you need the radial distribution 
function.

� Analogy: for the population on earth, the radial distribution function is 

zero up to about 6400 km from the center of the earth, rises sharply, and 
then falls back to almost zero (except people climbing mountains or flying 

in airplanes.

� The probability that an electron will be found in a thin spherical shell 

around the nucleus with radius 𝑟 and thickness 𝛿𝑟 is given by 𝑃(𝑟)𝛿𝑟 with

𝑃 𝑟 = 4𝜋𝑟"𝜓"(𝑟)

This special form applies only to s-orbitals, whereas the previous form applies

to all orbitals. 

Figure 1D.5



1D.4 The shapes of orbitals

The radial distribution function

Topic 1D

� It’s important to distinguish the radial distribution 

function from the wavefunction and its square, the 

probability density:

� The wavefunction itself tells you, through 

𝜓" 𝑟, 𝜃, 𝜙 𝛿𝑉, the probability of finding the electron 

in the small volume 𝜹𝑽 at a particular location 

specified by 𝑟, 𝜃, and 𝜙.

� The radial distribution function tells you, through 

𝑃(𝑟)𝛿r, the probability of finding the electron 

anywhere in the spherical shell between r and r + 𝛿r

Figure 1D.5



1D.4 The shapes of orbitals 

The radial distribution function

Topic 1D

� Note that for all orbitals, except s-orbitals, the radial distribution function 
𝑷 𝒓  is zero at the nucleus simply because the region in which the electron 

is being sought has shrunk to zero size.

� The probability density for an s-orbital is nonzero a the nucleus, and in 

the radial distribution, it is multiplied by a volume, 4𝜋𝑟"𝛿𝑟, which becomes

zero at the nucleus, at 𝑟 = 0.

� As 𝑟 increases, the value of 4𝜋𝑟" increases (the shell is getting bigger), 
but for the 1s-orbital, the square of the wavefunction, 𝜓", falls toward zero

as r increases.

� As a result, the product of 4𝜋𝑟" and 𝜓" starts off at zero, goes through a 

maximum, and then declines to zero (Figure 1D.5)

� The value of 𝑃(𝑟) turns out to be greatest at 𝒂𝟎, the Bohr radius.

� Therefore the Bohr radius corresponds to the radius at which an electron in 

a 1s-orbital in a hydrogen atom is most likely to be found. 

Figure 1D.5



1D.4 The shapes of orbitals

Boundary surface

Topic 1D

Instead of drawing an orbital as a cloud, chemists ususally draw a boundary surface: 

� A smooth surface that encloses most of the cloud.

+ easier to draw

– does not give the best picture of an atom

� An atom has indefinite, or «fuzzy», edges and is not as smooth as a boundary

surface might suggest. 

� Boundary surface is useful because an electron is most likely to be found inside it. 



1D.4 The shapes of orbitals

Boundary surface of the 1s-orbital

Topic 1D

� Keep in mind:

The probability density inside the boundary surface is

not uniform.

� An s-orbital has a spherical boundary surface

because the electron cloud is spherical.



1D.3 Quantum numbers, shells, and subshells

Boundary surfaces of higher-order s-orbitals

Topic 1D

� The s-orbitals of higher

energy have spherical

boundary surfaces of greater

diameter, the average

distance of the electron from

the nucleus also increases.

� They also have a more

complicated radial variation, 

with radial nodes, radii at 

which the wavefunction

passes through zero.

Figure 1D.7



1D.4 The shapes of orbitals

Boundary surfaces of p-orbitals

Topic 1D

� Two lobes with signs + and – to signify

that wavefunction has two different signs

in these two regions

� E.g. 2pz orbital is proportional to cos 𝜃 : 

as 𝜃 changes from 0 to 𝜋, cos 𝜃 changes

from +1 through 0 to −1.

Figure 1D.8



1D.4 The shapes of orbitals

Nodal planes

Topic 1D

� The two lobes of a p-orbital are separated by a 

nodal plane, cuts through the nucleus, 𝜓 = 0. 

The wavefunction changes sign on passing

through this plane.

� Also called angular nodes because they occur

when the angular wavefunction passes through

zero. 

� A p-electron will never be found at the nucleus

because the wavefunction is zero there.

� Electrons in p-orbitals have nonzero angular 

momentum, which flings them away from the

nucleus.

Figure 1D.8



1D.4 The shapes of orbitals

p-orbitals

Topic 1D

� Three p-orbitals in each subshell of an 

atom

� Quantum numbers 𝑚* = +1, 0, −1

� Chemists refer to them according to the

axes along which the lobes lie: px-, py-, pz-

orbitals

� pz-orbital has 𝑚* = 0

� px-, py-orbitals have 𝑚* = ±1

Figure 1D.9



1D.4 The shapes of orbitals

d-orbitals

Topic 1D

� Subshell 𝑙 = 2 consists of five d-orbitals

� Each d-orbital has four lobes, except 𝑑K"

Figure 1D.10



1D.4 The shapes of orbitals

f-orbitals

Topic 1D

� Subshell 𝑙 = 3 consists of
seven f-orbitals.

� Very complex appearance.

� Detailed form will not be

discussed again in this
course.

� Their existence is important

for understanding the
periodic table, the
presence of the

lanthanoids and actinoids
and the properties of the

later d-block elements. Figure 1D.11



1D.4 The shapes of orbitals

Summary

The shape of an atomic orbital depends on its quantum numbers and can be depicted 

by a boundary surface. The radial distribution function expresses the probability of 

finding an electron at a given radius regardless of its angular momentum.
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