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Last Tuesday: Topic 1D.1 Energy levels
Last Tuesday: Topic 1D.2 Atomic orbitals
Topic 1D.3 Quantum numbers, shells, and subshells
Topic 1D.4 The shapes of orbitals
Topic 1D.5 Electron spin
Topic 1D.6 The electronic structure of hydrogen: a summary

W H Y  D O  Y O U  N E E D  T O  K N O W  T H I S  

M A T E R I A L ?  

� The hydrogen atom is the simplest 

atom of all and is used to discuss 

the structures of all atoms. 

� It is therefore central to many 

explanations in chemistry.

W H A T  D O  Y O U  N E E D  T O  K N O W  

A L R E A D Y ?

� Features of spectrum of atomic 

hydrogen (Topic 1A)

� Concepts of wavefunction and 

energy level in quantum mechanics 

(Topic 1C)
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1D The hydrogen atom

Last Tuesday: Setting the stage

In Topic 1A, we have seen this puzzle

𝜈 = 𝑅
1
𝑛!"
−
1
𝑛""

𝑛! = 1,2, … , 𝑛" = 𝑛! + 1, 𝑛! + 2, …

Value of Rydberg constant, 𝑅 = 3.29 x 10!#𝐻𝑧

� Why such a pattern and why does 𝑅 have that value?

� Example 1C.1 gave clues: lines in spectrum are due to transitions between allowed energy 

levels of the atom, the difference in energy is carried awway by a photon of energy ℎ𝜈

� Aim of this topic: construct a quantum mechanical model of the hydrogen atom using the 

fact that an electron has wave-like properties and is described by a wavefunction, and has 

quantized energy levels.
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1D.1 Energy levels

Last Tuesday: Relationship to Bohr frequency condition

Bohr frequency condition:
ℎ𝜈 = Δ𝐸

Insert into previous equation. In the case of the hydrogen atom, if the electron falls 

from a level with quantum number 𝑛! to one with quantum number 𝑛" , then:

ℎ𝜈 = Δ𝐸 = −
ℎ𝑅
𝑛!!

−
ℎ𝑅
𝑛"!

= ℎ𝑅
1
𝑛"!

−
1
𝑛!!

𝑤𝑖𝑡ℎ 𝑛" = 1,2, … , 𝑛! = 𝑛" + 1, 𝑛" + 2, …

Compare to previous Rydberg equation:

𝜈 = 𝑅
1
𝑛"!

−
1
𝑛!!

𝑤𝑖𝑡ℎ 𝑛" = 1,2, … , 𝑛! = 𝑛" + 1, 𝑛" + 2, …
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1D.1 Energy levels

Last Tuesday: Finally, it makes sense

You can now see:

� Balmer series, for example, arises from transitions starting

at 𝑛! = 3, 4, 5 … and all ending at 𝒏𝟏 = 𝟐

� Lyman series: 𝑛! = 2, 3, 4, 5 … to 𝒏𝟏= 𝟏

Rydberg constant

𝑅 =
𝑚$𝑒%

8ℎ&𝜀'!
= 𝟑. 𝟐𝟗 × 𝟏𝟎𝟏𝟓 𝑯𝒛

� Imagine Schrödinger calculating this constant!

Topic 1D Figure 1D.1



Quantum Numbers, Shells, 
and Subshells
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1D.3 Quantum numbers, shells, and subshells

Three quantum numbers for the hydrogen atom

When the Schrödinger equation is solved for the hydrogen atom, three quantum 

numbers are needed to specify each wavefunction:

1. Principal quantum number 𝑛 is related to the size and energy of the orbital

2. Quantum number 𝑙 is related to its shape

3. Quantum number 𝑚) is related to its orientation in space
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1D.3 Quantum numbers, shells, and subshells

Principal quantum number 𝑛

Principal quantum number 𝑛 is related to the size and energy of the orbital, all 
orbitals with the same principal quantum number have the same energy, belong to 

the same shell of the atom.
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1D.3 Quantum numbers, shells, and subshells

Orbital angular quantum number l

Quantum number 𝑙 is related to its shape

It can take on the following values:

𝑙 = 0, 1, 2, … , 𝒏 − 𝟏

For example, for 𝑛 = 3, 𝑙 can have three values 0, 1, and 2.

Orbitals with principal number 𝑛 are divided into subshells 𝑙.

 For 𝑛 = 1: there is only one subshell 𝑙 = 0

 For 𝑛 = 2: there are two subshells 𝑙 = 0, 1

 For 𝑛 = 3: there are three subshells 𝑙 = 0, 1, 2
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1D.3 Quantum numbers, shells, and subshells

s-, p-, and d-orbitals

𝑙 = 0: s-orbital (origin: s-orbital spectroscopic lines described as “sharp”)

𝑙 = 1: p-orbital (origin: p-orbital spectroscopic lines described as “principal”)

𝑙 = 2: d-orbital (origin: d-orbital spectroscopic lines described as “diffuse”)

Higher values of 𝑙 are possible (g-, h-, … orbitals) are possible, but not often needed 

in practice.

Topic 1D

Value of l 0 1 2 3

Orbital type s p d f



1D.3 Quantum numbers, shells, and subshells

Orbital angular quantum number l

𝑙 is used to calculate orbital angular momentum of the electron, a measure of the rate 

(in classical terms) at which the electron circulates around the nucleus.

𝑂𝑟𝑏𝑖𝑡𝑎𝑙 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 𝑙 𝑙 + 1 ℏ

� An electron in an s-orbital for which 𝑙 = 0 has zero orbital angular momentum (not 

circulating around nucleus, and evenly distributed around it).

� An electron in a p-orbital for which 𝑙 = 1 has a non-zero orbital angular 

momentum of magnitude 2ℏ (can be thought of as circulating around nucleus).

� An electron in a d-orbital (𝑙 = 2) has a higher angular momentum ( 6ℏ) and an 

electron in an f-orbital (𝑙 = 3) an even higher one ( 12ℏ) and so on.
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1D.3 Quantum numbers, shells, and subshells

Magnetic quantum number ml

Distinguishes the individual orbitals within a subshell

Can take positive and negative integer values:

𝑚) = 𝑙, 𝑙 − 1, … , −𝑙

E.g. for a p-orbital: 𝑙 = 1 and 𝑚) = +1, 0, 1: there are three 

p-orbitals in a subshell with 𝑙 = 1.

Topic 1D
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1D.3 Quantum numbers, shells, and subshells

Question: how many subshells are there for quantum number n?
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1D.3 Quantum numbers, shells, and subshells

Magnetic quantum number ml

� Specifies the orientation of the orbital motion of the electron

� Orbital angular momentum around an arbitrary axis is equal to

𝑚$ℏ

� For example if 𝑚$ = +1, then the orbital angular momentum

around an arbitrary axis is +ℏ, whereas if 𝑚$ = −1, the orbital 

angular momentum around the same arbitrary axis is −ℏ.

� Direction of motion is opposite: the eletron in one state

circulates clockwise around the chosen axis, in the other

counterclockwise. 

� 𝑚$ = 0, the electron is not circulating around the selected axis

but, at a given radius, evenly distributes around it.

Topic 1D
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1D.3 Quantum numbers, shells, and subshells

Summary

Atomic orbitals are designated by the quantum numbers n, l, and ml and fall into shells 

and subshells.
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The Shapes of Orbitals
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1D.4 The shapes of orbitals

Each combination of three quantum numbers specifies an orbital

A combination of three quantum numbers specifies an individual orbital, acts as an 

“address” of the electron that ”occupies” it (meaning the electron has a probability 

distribution given by its wavefunction)

� E.g. an electron in the ground state of a hydrogen atom has 𝑛 = 1, 𝑙 = 0, 𝑚) = 0.

� Because 𝑙 = 0, the ground-state wavefunction is an example of an s-orbital (1s)

� Each shell has one s-orbital

� The s-orbital with quantum number n is called the ns orbital (1s, 2s, 3s orbital and 

so on).
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1D.4 The shapes of orbitals

s-orbitals are spherically symmetrical

All s-orbitals are independent of the angles 𝜃 and 𝜙: spherically symmetrical

The probability density of an electron at the point (r, 𝜃, 𝜙) when it is in an 1—orbital is 

given by the square of the corresponding wavefunction (given earlier):

Ψ! r, 𝜃, 𝜙 =
1
𝜋𝑎'&

𝑒*
!+
,!

In principle, the cloud representing the probability density never goes to zero, no

matter the value of r. However, there is virtually no chance of finding an electron

farther from the nucleus than about 250 pm, so for practical purposes, the atom is very

small.
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1D.4 The shapes of orbitals

s-orbitals are spherically symmetrical

High density of the cloud at nucleus: electron in an s-

orbital has a nonzero probability of being found right at 

the nucleus.

Why? Because there is no orbital angular momentum to

fling the electron away.

Topic 1D

Figure 1D.4



1D.4 The shapes of orbitals
Example 1D.1: Calculating the probability of finding an electron at a 
certain location
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1D.4 The shapes of orbitals

The radial distribution function

Topic 1D

� Value of 𝜓! lets you predict the probability of finding an electron at a 

given region at distance r from the nucleus 

� You want to know: the total probability of finding an electron at a distance 

r in all possible directions: you need the radial distribution function.

� The probability that an electron will be found in a thin spherical shell 
around the nucleus with radius 𝑟 and thickness 𝛿𝑟 is given by 𝑃(𝑟)𝛿𝑟 with

𝑃 𝑟 = 𝑟!𝑅! 𝑟

� For s-orbitals, 𝜓 = 𝑅𝑌 = "

!#
!
"
, so 𝑅! = 4𝜋𝜓! and this expressio is then the 

same as

𝑃 𝑟 = 4𝜋𝑟!𝜓!(𝑟)

This special form applies only to s-orbitals, whereas the previous form applies

to all orbitals. 

Figure 1D.5



1D.4 The shapes of orbitals

The radial distribution function

Topic 1D

� It’s important to distinguish the radial distribution 

function from the wavefunction and its square, the 

probability density:

� The wavefunction itself tells you, trhough 

𝜓! 𝑟, 𝜃, 𝜙 𝛿𝑉, the probability of finding the electron 

in the small volume 𝛿𝑉 at a particular location 

specified by 𝑟, 𝜃, and 𝜙.

� The radial distribution function tells you, through 

𝑃(𝑟)𝛿r, the probability of finding the elecctron 

anywhere in the spherical shell between r and r + 𝛿r

Figure 1D.5



1D.4 The shapes of orbitals 

The radial distribution function

Topic 1D

� Note that for all orbitals, not just s-orbitals, 𝑃 𝑟  is zero at the nucleus 

simply because the region in which the electron is being sought has 

shrunk to zero size.

� The probability density for an s-orbital is nonzero a the nucleus, and in the 

radial distribution, it is multiplied by a volume, 4𝜋𝑟!𝛿𝑟, which becomes

zero at the nucleus, at 𝑟 = 0.

� As 𝑟 increases, the value of 4𝜋𝑟! increases (the shell is getting bigger), but 
for the 1s-orbital, the square of the wavefunction, 𝜓!, falls toward zero as r

increases.

� As a result, the product of 4𝜋𝑟! and 𝜓! starts off at zero, goes through a 

maximum, and then declines to zero.

� The value of 𝑃 turns out to be greatest at 𝑎$, the Bohr radius.

� Therefore the Bohr radius corresponds to the radius at which an electron in 

a 1s-orbital in a hydrogen atom is most likely to be found. 

Figure 1D.5



1D.4 The shapes of orbitals

Boundary surface

Topic 1D

Instead of drawing an orbital as a cloud, chemists ususally draw a boundary surface:

� A smooth surface that encloses most of the cloud.

+ easier to draw

– does not give the best picture of an atom

� An atom has indefinite, or «fuzzy», edges and is not as smooth as a boundary

surface might suggest.

� Boundary surface is useful because an electron is most likely to be found inside it. 



1D.4 The shapes of orbitals

Boundary surface of the 1s-orbital

Topic 1D

� Keep in mind:

The probability density inside the boundary surface is

not uniform.

� An s-orbital has a spherical boundary surface

because the electron cloud is spherical.



1D.3 Quantum numbers, shells, and subshells

Boundary surfaces of higher-order s-orbitals

Topic 1D

� The s-orbitals of higher

energy have spherical

boundary surfaces of greater

diameter, the average

distance of the electron from

the nucleus also increases.

� They also have a more

complicated radial variation, 

with radial nodes, radii at 

which the wavefunction

passes through zero.

Figure 1D.7



1D.4 The shapes of orbitals

Boundary surfaces of p-orbitals

Topic 1D

� Two lobes with signs + and – to signify

that wavefunction has two different signs

in these two regions

� E.g. 2pz orbital is proportional to cos 𝜃 : 

as 𝜃 changes from 0 to 𝜋, cos 𝜃 changes

from +1 through 0 to −1.

Figure 1D.8



1D.4 The shapes of orbitals

Nodal planes

Topic 1D

� The two lobes of a p-orbital are separated by a 

nodal plane, cuts through the nucleus, 𝜓 = 0. The 

wavefunction changes sign on passing through

this plane.

� Also calles angular nodes because they occur

when the angular wavefunction passes through

zero. 

� A p-electron will never be found at the nucleus

because the wavefunction is zero there.

� Electrons in p-orbitals have nonzero angular 

momentum, which flings them away from the

nucleus.

Figure 1D.8



1D.4 The shapes of orbitals

p-orbitals

Topic 1D

� Three p-orbitals in each subshell of an 

atom

� Quantum numbers 𝑚) = +1, 0, −1

� Chemists refer to them according to the

axes along which the lobes lie: px-, py-, pz-

orbitals

� pz-orbital has 𝑚) = 0

� px-, py-orbitals have 𝑚) = ±1

Figure 1D.9



1D.4 The shapes of orbitals

d-orbitals

Topic 1D

� Subshell 𝑙 = 2 consists of five d-orbitals

� Each d-orbital has four lobes, except 𝑑:"

Figure 1D.10



1D.4 The shapes of orbitals

f-orbitals

Topic 1D

� Subshell 𝑙 = 3 consists of
seven f-orbitals.

� Very complex appearance.

� Detailed form will not be

discussed again in this
course.

� Their existence is important

for understanding the
periodic table, the
presence of the

lanthanoids and actinoids
and the properties of the

later d-block elements. Figure 1D.11



1D.4 The shapes of orbitals

Summary

The shape of an atomic orbital depends on its quantum numbers and can be depicted 

by a boundary surface. The radial distribution function expresses the probability of 

finding an electron at a given radius regardless of its angular momentum.
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Electron Spin
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1D.5 Electron spin

A spinning sphere

Tiny discrepancies were observed in the atomic spectrum of hydrogen.

Goudsmit and Uhlenbeck proposed these differences are due to the fact that an 

electron behaves like a spinning sphere (like a planet rotating around its axis).

This property is called spin.

Schrödinger’s theory did not account for spin, and it emerged naturally when the 

British physicist Paul Dirac found a way (in 1928) to combine Einstein’s theory of 

relativity with Schrödinger’s approach.

According to quantum mechanics, an electron has two spin states represented by the 

arrows ↑ and ↓ or the Greek letters 𝛼 and 𝛽.
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1D.5 Electron spin

Spin ↑ and ↓ 

Think of an electron as being able to spin counterclockwise (the ↑ state) and clockwise 

(the ↓ state) at exactly the same rate.

These two spins are distinguished by a fourth quantum number, the spin magnetic 

quantum number, 𝑚; .

This quantum number can have only one of two values: + "
!

(↑	) and − "
!

(↓).

Topic 1D Figure 1D.12



1D.5 Electron spin

Summary

An electron has the property of spin; 

the spin is described by the quantum number 𝑚; = ± "
!
.
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The Electronic Structure of 
Hydrogen: A Summary
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1D.6 The electronic structure of hydrogen: a summary

Topic 1D

1) In the ground state of hydrogen:

𝑛 = 1, 𝑙 = 0, 𝑚$ = 0,𝑚% = ±
1
2

Both values of 𝑚% are possible, spin orientation does not affect energy.

This is an s-electron with specified spin.

2) When an atom acquires enough energy (by absorbing a photon) for its electron to reach n=2:

It can occupy any of the four orbitals in that shell: one 2s and three 2p orbitals (in hydrogen, they all 

have the same energy): 2s- or 2p-electron

Average distance of electron from nucleus increases with increasing n: atom is «swelling up» as it is

excited energetically. 



1D.6 The electronic structure of hydrogen: a summary

Topic 1D

3) Atom acquires even more energy:

Electron can move to n = 3 shell

Atom is now even larger

Nince orbitals available (3s, 3p, 3d)

4) More energy still:

Electron can move to n = 4 shell with 16

available orbitals

Figure 1D.13



1D.6 The electronic structure of hydrogen: a summary
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1D.6 The electronic structure of hydrogen: a summary

Summary

The state of an electron in a hydrogen atom is defined by the four quantum numbers n, 

l, ml and ms; as the value of n increases, the size of the atom increases.
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The skills you have mastered are the ability to

q Assess the relative probability of finding an electron at a given distance from the nucleus of an 
atom.

q Name and explain the relation of each of the four quantum numbers to the properties and relative 
energies of atomic orbitals.

q Describe the properties of electron spin.

q Describe the state of a hydrogen atom in ist ground and excited states.

Summary: You have learned that an electron in a hydrogen atom is described by wavefunctions 
called atomic orbitals and that each orbital is specified by three quantum numers: n, l, and m_l. 
You now know that the shape and energy of a given orbital is found by solving the Schrödinger 
equation for an electron attracted to a nucleus. You also now know that transitions between the 
allowed energy levels account for the observed patterns of spectroscopic lines. You have also 
encountered the property of “electron spin” and know that electron spin may have either of 

two orientations.
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1C.2 The quantization of energy

Quantization of energy and the atomic spectrum of hydrogen

Topic 1D

Particle in a box Hydrogen atom

Dimension of 
space

1D 3D

Walls Physical walls No physical walls, and electrons are confined by pull of the 
nucleus

Quantization Energy quantized

Potential energy Potential energy inside the box is zero Potential energy governed by Coulomb potential

Wave function 
shape

Sinusoidal functions (sine or cosine) Wave functions (called orbitals) are more complex, often 
spherical or lobed in shape (spherical harmonics), with 
both radial and angular components.

Quantum 
numbers

One quantum number, n, which represents the 
energy level and is related to the number of 
nodes in the wave function.

Three quantum numbers: 
n: principal quantum number (energy level),
l: angular momentum quantum number (shape of the 
orbital),
ml: magnetic quantum number (orientation of the orbital).

Degeneracy No degeneracy: each energy level corresponds 
to one unique state.

Degeneracy in energy levels: for a given principal quantum 
number n, multiple different orbitals (characterized by l and 
ml) have the same energy.

Boundary 
conditions

The wave function must go to zero at the walls 
of the box.

The wave function must go to zero at infinity, far from the 
nucleus.

Physical 
interpretation

The particle is free inside the box but cannot 
escape due to infinite potential at the walls.

The electron is bound to the nucleus due to the attractive 
Coulomb force, which confines the electron.


