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Housekeeping notes

� Sharing slides in advance

� Sharing PDF of book

� Feedback on Moodle: Thank you!

� What I can implement now:

1. Give you the solutions to the exercises earlier (as soon as available).

2. There were supposed to be subtitles in French on Mediaspace, I will 

doublecheck what is going on with that.

3. Develop more material on the board.



Wavefunctions and Energy 
Levels

Topic 1C



Overview Chapter 1 (Focus 1: Atoms)

Topic 1C



Topic 1C.1 The wavefunction and its interpretation
Topic 1C.2 The quantization of energy

W H Y  D O  Y O U  N E E D  T O  K N O W  T H I S  

M A T E R I A L ?  

� Whenever you are dealing with 

quantum mechanics, you have to 

consider the properties of 

wavefunctions and the 

information they contain.

W H A T  D O  Y O U  N E E D  T O  K N O W  

A L R E A D Y ?

� Properties of sine functions (sin x)

� Concept of duality

� De Broglie relation between 

momentum and wavelength

� Heisenberg uncertainty principle

Topic 1B



The Wavefunction and Its 
Interpretation

Topic 1C.1



Classical 

mechanics:

Fixed predictable 

path 

Quantum 

mechanics:

Probability 

distribution



Topic 1C

1C.1 The wavefunction and its interpretation

Last time: Classical vs. quantum mechanics

� Classical mechanics: the location and 

velocity of a particle are known precisely at 

each point in time (trajectory), described 

by a path or position function.

� Quantum mechanics: the particle is better 

described by its wave-like character with a 

wavefunction 𝜓 (position not defined) and 

a probability density 𝜓! .



1C.1 The wavefunction and its interpretation

Last time: The Schrödinger equation

Topic 1C

� The Schrödinger equation is used to calculate the wavefunction for any 

particle confined to any region of space, including electrons confined within 

atoms and molecules.

𝐻𝜓 = 𝐸𝜓

� Equation not used directly in this class.

� You will need to recognize (not know by heart, they would be on the formula

sheet) the form of some of its solutions, but not how these solutions are found.



1C.1 The wavefunction and its interpretation

Last time: The particle-in-a-box model

Topic 1C

� The Schrödinger equation is used to calculate

both the wavefunction 𝝍 and the

corresponding energy 𝑬.

� The particle-in-a-box model is used to show 

how the Schrödinger equation can be 

applied to describe quantum systems.

� Simple model system: a single particle of

mass m confined in a one-dimensional

«box» between two impenetrable walls a 

distance L apart.



1C.1 The wavefunction and its interpretation

Last time: The time-independent Schrödinger equation

Topic 1C

� For a particle of mass 𝑚 moving in one dimension in a region where the potential energy is 𝑉 𝑥 , 

the equation is

−
ℏ!

2𝑚
𝑑!𝜓
𝑑𝑥! + 𝑉 𝑥 𝜓 = 𝐸𝜓

Kinetic 
energy

Potential 
energy

Total
energy

𝐻𝜓� Can also be written as:

−
ℏ!

2𝑚
𝑑!𝜓(𝑥)
𝑑𝑥! + 𝑉 𝑥 𝜓(𝑥) = 𝐸𝜓(𝑥)

Both notations are acceptable. Using ψ without explicitly stating the variable is common in theoretical 

discussions, while ψ(x) is often used when emphasizing the dependence on position.



1C.1 The wavefunction and its interpretation

Last time: The mathematical form of the particle in the box

Topic 1C

Due to boundary conditions, only wavefunctions with certain wavelengths

can exist in the box. The wavefunction is derived as a solution to the time-

independent Schrödinger equation for the particle in a box, which is given 

by:

𝜓! 𝑥 =
2
𝐿

"
#
sin

𝑛𝜋𝑥
𝐿

𝑛 = 1,2, …

� For 𝜓! 𝑥 to satisfy the boundary 𝜓! 𝐿 = 0, !$%
&

must be an integer 

multiple of 𝜋 when 𝑥 = 𝐿, so that the sine function goes to zero. This 

only happens if 𝑛 is a positive integer (1, 2, 3,...), because:

� sin 𝑛𝜋 = 0 when n=1,2,3,…

Figure 1C.3



1C.1 The wavefunction and its interpretation

Last time: The mathematical form of the particle in the box

Topic 1C

n, is a quantum number.

A quantum number:

� Is an integer (or sometimes a half-integer, such as ½, see 

Topic 1D)

� Labels a wavefunction

� Specifies a state



Objects have well-defined positions and velocities.

A. True for only classical 
mechanics

B. True only for quantum 
mechanics

C. True for both
D. True for neither

Session ID: 346047



1C.2 The quantization of energy

Answer: True for only classical mechanics.

Topic 1C

� In classical mechanics, objects are described as having well-defined 

positions and velocities at any given time. You can measure both quantities 

simultaneously with high precision.

� In quantum mechanics, particles do not have well-defined positions and 

velocities simultaneously due to the Heisenberg Uncertainty Principle. 

Instead, they are described by a wavefunction that gives probabilities for 

finding a particle in various positions and states, leading to inherent 

uncertainty.



Wave-like behaviors (such as interference patterns) can be 
observed for particles.

A. True for only classical 
mechanics

B. True only for quantum 
mechanics

C. True for both
D. True for neither

Session ID: 346047



1C.2 The quantization of energy

Answer: True for both

Topic 1C

• In quantum mechanics, particles such as electrons and photons exhibit wave-

like behaviors, including interference patterns. This is famously 

demonstrated in the double-slit experiment, where individual particles can 

create an interference pattern when not observed, indicating their wave nature.

• In classical mechanics, wave-like behaviors can also be observed for 

macroscopic systems, such as water waves or sound waves, which also exhibit 

interference patterns.



Energy of systems is continuous and can have any value.

A. True for only classical 
mechanics

B. True only for quantum 
mechanics

C. True for both
D. True for neither

Session ID: 346047



1C.2 The quantization of energy

Answers: True for only classical mechanics.

Topic 1C

� In classical mechanics, energy is considered to be continuous and can take 

any value. For example, a classical particle can have any amount of kinetic or 

potential energy depending on its position and motion. In quantum 

mechanics, energy levels are quantized, meaning that particles (like electrons 

in an atom) can only occupy specific energy levels. They cannot have arbitrary 

values; instead, they can only exist at discrete energy states.



The Quantization of Energy

Topic 1C.2



What is the purpose of the particle in a box model in 
quantum mechanics? Multiple answers can apply.

A. To illustrate the concept of 

quantized energy levels.

B. To demonstrate how boundary 

conditions affect wavefunctions.

C. To show that particles can exist 

outside of a confined region.

D. To provide a simple framework for 

understanding wave-particle 

duality.

Session ID: 346047



1C.2 The quantization of energy

Energies of a particle in a box

Topic 1C

The wavefunctions associated with different quantum numbers also have different 

energies associated with them. How do we calculate these energies?

If the particle stays in the box, the potential energy is zero:

𝐸" = 𝐸#$#%&

Use de Broglie relation 𝜆 = '
(

:

𝐸" =
1
2
𝑚𝑣! =

𝑚𝑣 !

2𝑚
=

𝑝 !

2𝑚
=

ℎ
𝜆

!

2𝑚
=

ℎ!

2𝑚𝜆!



1C.2 The quantization of energy

Energies of a particle in a box

Topic 1C

𝐸" =
1
2𝑚𝑣

! =
𝑚𝑣 !

2𝑚 =
𝑝 !

2𝑚 =
ℎ
𝜆

!

2𝑚 =
ℎ!

2𝑚𝜆!

Recognize, only whole-number multiples of half-wavelengths can fit into the box: 

The wavelengths possible for a particle in a box of length L must meet the condition that 𝜆 = 2𝐿, 𝐿, !
#
𝐿, …

In other words, the allowed wavelengths are

𝜆 =
2L
n , with n = 1,2, …

Insert this expression for 𝜆 into the expression for energy:

𝐸$ =
ℎ!

2𝑚𝜆! =
ℎ!

2𝑚 2𝐿
𝑛

! =
𝑛!ℎ!

8𝑚𝐿!



1C.2 The quantization of energy

What does this equation tell you?

Topic 1C

𝐸) =
ℎ!

2𝑚𝜆! =
ℎ!

2𝑚 2𝐿
𝑛

! =
𝑛!ℎ!

8𝑚𝐿!

Mass in denominator: energy levels are lower and closer

together for heavy particles than for light ones.

Length in denominator: as the walls become more confining

(L smaller), the energy levels rise and become more widely

spaced. In contrast, as the walls become less confining (L

larger), the levels fall and get closer together.

Figure 1C.4



1C.2 The quantization of energy

What does this equation tell you?

Topic 1C

𝐸) =
𝑛!ℎ!

8𝑚𝐿!

� n can only be integer values à energy is quantized!

� Energy quantization stems from the boundary conditions on 

the wavefunction.

� Particle in a box translates to atoms:

� Electrons must also satisfy certain boundary conditions, but 

now in three dimensions.

� We will revisit spectral lines in hydrogen absorption

spectrum! (TOPIC 1D)

Figure 1C.4



1C.2 The quantization of energy

Energy separation between neighboring levels

Topic 1C

𝐸)*+ − 𝐸) =
𝑛 + 1 !ℎ!

8𝑚𝐿! −
𝑛!ℎ!

8𝑚𝐿!

= 𝑛 + 1 ! − 𝑛!
ℎ!

8𝑚𝐿! =
2𝑛 + 1 ℎ!

8𝑚𝐿!

As L or m increases, the separation between neighboring

energy levels decreases.

Macroscopic objects in ordinary-sized containers have

energy levels that are extremely close together: 

undetectable quantization.

Figure 1C.4



1C.2 The quantization of energy

Quantization of energy and the atomic spectrum of hydrogen

Topic 1C

Energy is quantized à this realization is key to understanding the atomic spectrum

of hydrogen (Topic 1A).

Particle in a box Hydrogen atom

1D 3D

Physical walls No physical walls, and electrons are 
confined by pull of the nucleus

Energy quantized



1C.2 The quantization of energy

What are these lines?!

Topic 1C

A spectral line arises from a transition of an electron between allowed energy levels.

The difference in energy is carried away as a photon.

ℎ𝜈 = 𝐸,((-. − 𝐸&$/-. = Δ𝐸

This equation is known as the Bohr frequency condition.

Figure 1A.10



1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box

Topic 1C

We will estimate the energies of the hydrogen atom.

Estimate: «back of the envelope» calculation

Treat hydrogen atom as a one-dimensional box of length 150. pm

(the approximate diameter of the atom) with one electron.

Predict energy level separation between the lowest and next

higher energy levels.

If the electron falls from the upper level to the lower level, what

would be the wavelength of the radiation emitted as a photon?



1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box

Topic 1C



1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box

Topic 1C



1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box

Topic 1C

Figure 1A.10



1C.2 The quantization of energy

Nanocrystals

Topic 1C

Electrons in nanoscale particles (1-100 nm diameter) 

made of semiconductor materials are quantum

confined and behave like a particle in a box: Quantum 

dots or nanocrystals.

CdSe (cadmium selenide) nanoparticles coated with

shell of ZnS plus polymer, modified with antibodies.

Antigen-specific binding on cells.

Size of quantum dot will change emitted light 

wavelength: imaging at multiple wavelengths possible.

BOX 1C.1



1C.2 The quantization of energy

Particle in a box: zero-point energy

Topic 1C

� Surprising implication of equation: 𝐸) =
)%'%

012%

� A particle in a container cannot have zero energy.

� The lowest value of n is 1.

� Lowest energy is 𝐸+ =
'%

012%
 (Zero-point energy)

� What this means: A particle can never be perfectly still when it is confined between 

two walls, it must always possess an energy, in this case, at least the kinetic energy 

'%

012%
.



1C.2 The quantization of energy

Zero-point energy is consistent with uncertainty principle

Topic 1C

The Heisenberg uncertainty principle states that there is a fundamental limit to how precisely 
we can simultaneously know a particle’s position and momentum:

∆p × Δ𝑥 ≥
1
2ℏ

• The particle is confined within a box, so its position uncertainty Δ𝑥 is on the order of the 
size of the box, 𝐿.

Δ𝑥 ≈ 𝐿

• Due to the Uncertainty Principle, if the particle's position is confined, the momentum p 

(and hence its velocity) cannot be zero. There must be some uncertainty in momentum ∆p, 
meaning the particle has a nonzero minimum momentum.

∆p ≥ ℏ/2𝐿

• This nonzero momentum means the particle always has some kinetic energy, even in the 
ground state, and cannot be perfectly still. This nonzero energy is the zero-point energy.



Why is n = 0 not a valid solution for the particle in a box? Hint: 
think of the Born interpretation of the wavefunction.

A. The wavefunction ψ0(x) would be 
zero everywhere, resulting in no 
probability of finding the particle 
in the box.

B. The wavefunction ψ0(x) is 
undefined for n=0 and cannot be 
calculated.

C. The energy levels for n=0 would 
be negative, which is not 
physically possible.

D. The boundary conditions require 
that all quantum numbers must 
be non-negative.



1C.2 The quantization of energy

Answer: Why is n = 0 not a valid solution for the particle in a box?

Topic 1C

� If n = 0, the wavefunction 𝜓& 𝑥  would be:

𝜓& 𝑥 =
2
𝐿 sin

0𝜋𝑥
𝐿 =

2
𝐿 sin 0 = 0

� the wavefunction 𝜓& 𝑥 would be zero everywhere inside the box, meaning that there is no 
probability of finding the particle anywhere inside the box. This contradicts the Born 

interpretation of the wave function.

� According to the Born interpretation, the square of the wavefunction’s absolute value, 𝜓& 𝑥 ! 

represents the probability density of finding the particle at a given position x within the box.

• If n = 0, then 𝜓& 𝑥 = 0 everywhere, which implies that 𝜓& 𝑥 ! everywhere.

• This would mean the probability density is zero at all positions, indicating there is zero 
probability of finding the particle anywhere inside the box. Physically, this is nonsensical 

because the particle must be somewhere in the box.



1C.2 The quantization of energy

The shapes of the wavefunctions

Topic 1C

Figure 1C.5

� The shapes reveal interesting information.

� The two lowest-energy wavefunctions are displayed on the 

right, n = 1 and n = 2.

� Density of shading: likelihood of finding a particle (formally: 
probability density)

� For 𝜓' with energy h!/8𝑚𝐿!: the particle is most likely found at 
the center of the box.

� For 𝜓! with energy h!/2𝑚𝐿! : the particle is least likely found at 
the center of the box, most likely to be found in regions 

between the center and the walls.

� The most likely locations of a quantum mechanical particle, 
such as an electron, depend on the quantum state it is in.



1C.2 The quantization of energy
Why is this statement relevant for you even if you don’t plan on 
studying quantum chemistry again?

Topic 1C

The most likely locations of a quantum mechanical particle, such as an electron, 
depend on the quantum state it is in.



1C.2 The quantization of energy
Why is this relevant for you even if you don’t plan on studying quantum 
chemistry again?

Topic 1C

� Organic Chemistry: Quantum mechanical electron locations dictate 

bonding, molecular structure, and reactivity in chemical reactions.

� Biochemistry: Electron distributions in quantum states help explain enzyme 

catalysis, electron transport in metabolic pathways, and drug interactions.

� Physical Chemistry: Quantum state electron positions are crucial for 

spectroscopy, reaction kinetics, and thermodynamic properties through 

quantum models and calculations.

� etc.



Student quotes

“BECAUSE I WANT TO WORK IN PERFUMES.”

“BECAUSE I WANT TO MAKE PERFUMES.”

Your interest in creating perfumes connects to the quantum mechanics concept 

that the most likely locations of electrons in fragrance molecules depend on 

their quantum states. This understanding is crucial for predicting and 

manipulating the chemical properties that define different scents, thus bridging 

their passion for perfumery with the principles of quantum chemistry.



The skills you have mastered are the ability to

q Describe the origin and shapes of the wavefunctions of a particle in a box.

q Calculate the allowed energies of a particle in a box and explain how they depend

on the length of the box and the mass of the particle.

q Explain what is meant by zero-point energy and accounts for its origin

Summary: You now know that the location of a particle is expressed by a 

wavefunction, the square of which expresses the probability (as a probability 

density) that the particle will be found in each region of space. You also know 

that a wavefunction is found by solving the Schrödinger equation and that one 

consequence of the wavefunction having to fit into a region of space is that a 

particle confined to a region can have only certain discrete energies known as 

energy levels.

Topic 1C



The Hydrogen Atom

Topic 1D



Overview Chapter 1 (Focus 1: Atoms)

Topic 1D



Topic 1D.1 Energy levels
Topic 1D.2 Atomic orbitals
Topic 1D.3 Quantum numbers, shells, and subshells
Topic 1D.4 The shapes of orbitals
Topic 1D.5 Electron spin
Topic 1D.6 The electronic structure of hydrogen: a summary

W H Y  D O  Y O U  N E E D  T O  K N O W  T H I S  

M A T E R I A L ?  

� The hydrogen atom is the simplest 

atom of all and is used to discuss 

the structures of all atoms. 

� It is therefore central to many 

explanations in chemistry.

W H A T  D O  Y O U  N E E D  T O  K N O W  

A L R E A D Y ?

� Features of spectrum of atomic 

hydrogen (Topic 1A)

� Concepts of wavefunction and 

energy level in quantum mechanics 

(Topic 1C)

Topic 1D



1D The hydrogen atom

Setting the stage

In Topic 1A, we have seen this puzzle

𝜈 = 𝑅
1
𝑛"#
−
1
𝑛##

𝑛" = 1,2, … , 𝑛# = 𝑛" + 1, 𝑛" + 2, …

Value of Rydberg constant, 𝑅 = 3.29 x 10"'𝐻𝑧

� Why such a pattern and why does 𝑅 have that value?

� Example 1C.1 gave clues: lines in spectrum are due to transitions between allowed energy 

levels of the atom, the difference in energy is carried awway by a photon of energy ℎ𝜈

� Aim of this topic: construct a quantum mechanical model of the hydrogen atom using the 

fact that an electron has wave-like properties and is described by a wavefunction, and has 

quantized energy levels.

Topic 1D



Energy Levels

Topic 1D.1



1D.1 Energy levels

Setting the stage

� Again: an electron in an atom is like a particle in a box in the sense that it is 

confined within the atom, not by the walls, but by the electrostatic pull of the 

nucleus.

� It follows boundary conditions are also applicable for atom.

� Solving Schrödinger equation for the hydrogen atom will result in existence of 

discrete energy levels.

Topic 1D



The state of a particle in a 1D box is defined by one quantum number. 
How many quantum numbers do you think will be needed to specify the 

wavefunction of an electron in a hydrogen atom?

A. 1
B. 2
C. 3
D. 4 or more



1D.1 Energy levels

Allowed energy levels for electron in hydrogen atom

To find allowed energy levels of an electron in a hydrogen atom, you need to solve 

appropriate Schrödinger equation. Consider:

1. Motion in three dimensions.

2. Instead of simple walls, the electron experiences a Coulomb potential due to 

the nucleus. The Coulomb potential energy of an electron of charge −𝑒 at a 

distance 𝑟 from the nucleus of charge +𝑒:

𝑉 𝑟 =
−𝑒 × +𝑒
4𝜋𝜀3𝑟

= −
𝑒!

4𝜋𝜀3𝑟

𝜀3: electric constant

Topic 1D



1D.1 Energy levels

Allowed energy levels for electron in hydrogen atom

Schrödinger managed to solve his equation with this potential 

energy:

𝑉 𝑟 =
−𝑒 × +𝑒
4𝜋𝜀3𝑟

= −
𝑒!

4𝜋𝜀3𝑟

𝜀3: electric constant

He found that the allowed energy levels of an electron in a 

hydrogen atom are:

𝐸) = −
ℎ𝑅
𝑛!

𝑅 = 1(-)

0'*4+%
 with 𝑛 = 1, 2, …

Topic 1D Figure 1D.1



1D.1 Energy levels

What does this equation tell you?

𝐸! = −
ℎ𝑅
𝑛#

𝑅 = (!)"

*+#,$%
 with 𝑛 = 1, 2, …

� All energies are negative: electron has a lower energy far from the
nucleus, it takes energy to remove an electron from an atom.

� There is a quantum number, n, like for the particle in a box. Energy 

is quantized, can only have discrete values.

� n appears in the denominator: as n increases, the energies of
successive levels increase (become less negative).

� As the energies approach zero, the electron is on the point of
escaping from the atom.

Topic 1D Figure 1D.1



1D.1 Energy levels

Relationship to Bohr frequency condition

Bohr frequency condition:
ℎ𝜈 = Δ𝐸

Insert into previous equation. In the case of the hydrogen atom, if the electron falls 

from a level with quantum number 𝑛! to one with quantum number 𝑛+ , then:

ℎ𝜈 = Δ𝐸 = −
ℎ𝑅
𝑛!!

−
ℎ𝑅
𝑛+!

= ℎ𝑅
1
𝑛+!

−
1
𝑛!!

𝑤𝑖𝑡ℎ 𝑛+ = 1,2, … , 𝑛! = 𝑛+ + 1, 𝑛+ + 2, …

Compare to previous Rydberg equation:

𝜈 = 𝑅
1
𝑛+!

−
1
𝑛!!

𝑤𝑖𝑡ℎ 𝑛+ = 1,2, … , 𝑛! = 𝑛+ + 1, 𝑛+ + 2, …

Topic 1D



1D.1 Energy levels

Finally, it makes sense

You can now see:

� Balmer series, for example, arises from transitions starting

at 𝑛! = 3, 4, 5 … and all ending at 𝒏𝟏 = 𝟐

� Lyman series: 𝑛! = 2, 3, 4, 5 … to 𝒏𝟏= 𝟏

Rydberg constant

𝑅 =
𝑚-𝑒6

8ℎ7𝜀3!
= 𝟑. 𝟐𝟗 × 𝟏𝟎𝟏𝟓 𝑯𝒛

� Imagine Schrödinger calculating this constant!

Topic 1D Figure 1D.1



1D.1 Energy levels

Finally, it makes sense

Topic 1D



1D.1 Energy levels

Finally, it makes sense

Topic 1D



Student quotes

“IT'S FUN AND SATISFYING AND VERY INTERESTING.”

“NEW DISCOVERIES, RESEARCH, CURIOSITY.”

Your enthusiasm for discovery and satisfaction in learning resonates with the spirit 

of innovation and exploration embodied by Schrödinger's work. His ability to 

connect theoretical principles with fundamental constants like the Rydberg 

constant reflects the excitement of scientific inquiry, aligning perfectly with their 

passion for research and the joys of unraveling the mysteries of the universe.



1D.1 Energy levels

Generalization to other one-electron ions possible

Schrödinger was able to generalize this equation

𝐸$ = −
ℎ𝑅
𝑛!

𝑅 =
𝑚,𝑒-

8ℎ#𝜀&!
 with 𝑛 = 1, 2, …

to other one-electron ions such as He+ and even C5+. For a nucleus with atomic number 𝑍 and charge 𝑍𝑒, 
the energy levels are:

𝐸$ = −
𝑍!ℎ𝑅
𝑛! 𝑛 = 1, 2, …

Note: because 𝑍 appears in the numerator, the greater the value of the nuclear charge, the lower the 

energy (more negative) of the electron and the more tightly it is bound to the nucleus.

This equation can be used for one-electron ions, for many-electron atoms, see Topic 1E.

Topic 1D



1D.1 Energy levels

Key terms to remember

� The integer 𝑛 = 1, 2, … is called the principal quantum number.

� Coming soon: more quantum numbers.

� The lowest (most negative) energy possible for an electron in a hydrogen atom is obtained when
𝑛 = 1 and 𝐸! is equal to −ℎ𝑅: ground state of the atom.

� When the atom absorbs a photon or collides with other particles, it may be excited from the
ground state to a level with a higher value of 𝑛.

� If collision are very energetic, 𝑛 might reach infinity, a process called ionization. An electron is
removed from the hydrogen atom.

� The minimum ionization energy starting from an electron in the ground state for a hydrogen atom
is equal to ℎ𝑅. (numerical value: 2.18 × 10-".𝐽 or 13.6 eV).

� Any further energy beyond the ionization energy adds kinetic energy to the liberated electron.

Topic 1D



1D.1 Energy levels

Summary

The energy levels of a hydrogen atom are defined by the principal quantum number, 

𝑛 = 1, 2, …, and form a converging ladder, as shown in Figure 1D.1. Spectroscopic lines 

arise from transitions between the levels. 

Topic 1D



Atomic Orbitals

Topic 1D.2



1D.2 Atomic orbitals

Wavefunction and atomic orbitals

The wavefunction of an electron in an atom is called an atomic orbital.

Less finite than «orbit» of an electron around the nucleus, to account for wave-like 

nature.

Again: the square of a wavefunction tells you the probability density of finding an 

electron an each point in space.

In context of hydrogen atom: imagine a cloud centered on the nucleus.

Dense regions: locations where the electron is most likely to be found.

Topic 1D



1D.2 Atomic orbitals

Spherical polar coordinates

The atom is like a sphere (3D), spherical polar 

coordinates apply:

� r is the radius, the distance from the nucleus

� 𝜃 (theta) is the colatitude, the angle from the

positive z-axis (the «north pole»), which can be

thought of as playing the role of the

geographical «latitude» (north or south)

� 𝜙 (phi) is the azimuth, the angle about the z-

axis, the geographical «longitude» (east or west)

Topic 1D



1D.2 Atomic orbitals

Spherical polar coordinates

The below applet allows you to see how the 

location of a point changes as you vary r, θ, and ϕ

https://mathinsight.org/spherical_coordinates
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1D.2 Atomic orbitals

Wavefunction and atomic orbitals

Each wavefunction has a value that depends on 

these three coordinates and is therefore denoted as

Ψ r, 𝜃, 𝜙 . You can also express it as the product of a 

function that depends only on r and another function

that depends on the angles 𝜃 and 𝜙:

Ψ r, 𝜃, 𝜙 = R(r) × 𝑌(𝜃, 𝜙)

𝑅 𝑟 : radial wavefunction, expresses how the 

wavefunction varies with distance from the nucleus.

𝑌(𝜃, 𝜙): angular wavefunction, expresses how the

wavefunction varies as the angles 𝜃 and 𝜙 change.
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1D.2 Atomic orbitals

Expressions for atomic orbitals

� Expressions for some atomic orbitals are shown in table on next slide

� Looks complicated at first glance, do not worry about knowing these by heart.

� Some are not complicated, e.g. the wavefunction corresponding to the ground state of the hydrogen atom (n = 1) is:

Ψ r, 𝜃, 𝜙 =
1
𝜋𝑎&'

(
)
𝑒*

+
,!

𝑎&: Bohr radius (52.9 pm)

� Wavefunction is spherically symmetric: independent of 𝜃 and 𝜙 and for a given radius, ist value is the same in all 

directions.

� Wavefunction decays exponentially toward zero as r increases. Probability density is highest close to the nucleus (at 
r = 0, e0 = 1)

� In contrast to particle in a box: no physical, confining walls for electron in atom, but the pull of nucleus weakens with

distance.
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1D.2 Atomic orbitals

Example from Table 1.2

Topic 1D

� For example, a 2px-orbital (n = 2, l = 1, «ml» = x) of hydrogen (Z = 1) is

Ψ r, 𝜃, 𝜙 = 𝑅!,+ 𝑟 ×𝑌+,C 𝜃, ϕ =
1
2 6

1
a3

7
! 𝑟
𝑎3
𝑒D

.
!%+ ×

3
4𝜋

+
!
sin 𝜃 cos 𝜙



1D.2 Atomic orbitals

Summary

The distribution of an electron in an atom is described by a wavefunction known as an 

atomic orbital.
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Student questions 1/2

For the zero-point energy in the particle in a box, what happens to the energy at n=1 when the sample is cooled to 0 

Kelvin?

At absolute zero (0 K), a quantum system like a particle in a box cannot have zero energy due to the uncertainty principle, which 

dictates that particles cannot be at rest. Therefore, even when cooled to 0 K, the particle retains its zero-point energy, which 

corresponds to the energy level at n=1. This means that the particle will still possess a minimum kinetic energy, reflecting its 

quantum nature, and cannot fall to a lower state (like n=0) since that state is not physically valid in this model. 

What does the notation ∣ψ∣2 (with vertical bars) signify in the context of probability density?

The wavefunction ψ can be a complex number, represented as 𝜓 = 𝑅𝑒 𝜓 + 𝑖𝐼𝑚 𝜓 , where 𝑅𝑒 𝜓 is the real part and 𝐼𝑚 𝜓 is the 

imaginary part. The magnitude of the wavefunction, 𝜓 = 𝑅𝑒 𝜓
!
+ 𝐼𝑚 𝜓

!
, indicates the "size" of the wavefunction in the 

complex plane. To find the probability density of locating the particle, we use 𝜓 !, which provides the likelihood of finding the 

particle in a specific region of space. Reminder: complex numbers are outside the scope of this class. For our purposes 𝜓 !  could 

also be written as 𝜓!  or 𝜓(𝑥)!  because in our examples, we do not deal with complex numbers.

Are there any energy levels at point zero for the hydrogen atom, given that all energies are negative and approach zero?

There are no energy levels at point zero; while the energy levels approach zero as the electron moves further from the nucleus, 

zero energy indicates a free electron would no longer be bound to the atom.
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Student questions 2/2
What’s the difference between the wavelength in the sine function of the wavefunction and the wavelength of emitted light from an electron transitioning 
to a lower energy level?

In quantum mechanics, the wavelength in the wavefunction, represented by the sine function 𝜓" 𝑥 = #
$ sin

"%&
$ , corresponds to the spatial distribution of the 

particle's probability density. This wavelength, 𝜆', can be determined from the condition that only certain wavelengths fit into the "box" of length LLL. Specifically, 
for a particle in a box, the relationship is given by:

𝜆' =
2L
n

where n is the quantum number (an integer representing different energy levels).

On the other hand, the wavelength of the emitted light when an electron transitions from a higher energy state E2 to a lower energy state E1 is given by the energy 

difference between these states, according to Planck's equation:

𝐸 = ℎ𝜈 =
ℎ𝑐
𝜆

where E is the energy of the emitted photon, h is Planck’s constant, 𝜈 is the frequency of the emitted light, c is the speed of light, and λ is the wavelength of the 
emitted photon.

Thus, the wavelength of the emitted light can be calculated using the energy difference:

Δ𝐸 = 𝐸# − 𝐸( =
ℎ𝑐
𝜆

In summary, the wavelength in the wavefunction relates to the spatial characteristics of the quantum state of the electron in the box, while the wavelength of the 
emitted light is directly related to the energy transitions of the electron as it moves between discrete energy levels, reflecting the quantized nature of its energy 
states.
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