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Housekeeping notes

Sharing slides in advance
Sharing PDF of book
Feedback on Moodle: Thank you!

What | can implement now:
1. Give you the solutions to the exercises earlier (as soon as available).

2. There were supposed to be subtitles in French on Mediaspace, | will

doublecheck what is going on with that.

3. Develop more material on the board.



Wavetunctions and Energy
Levels

Topic 1C



Overview Chapter 1 (Focus 1: Atoms)

Topic 1C



Topic 1B

Topic 1C.1 The wavefunction and its interpretation
Topic 1C.2 The quantization of energy

WHY DO YOU NEED TO KNOW THIS
MATERIAL?

Whenever you are dealing with
quantum mechanics, you have to
consider the properties of
wavefunctions and the

information they contain.

WHAT DO YOU NEED TO KNOW
ALREADY?

Properties of sine functions (sin x)
Concept of duality

De Broglie relation between

momentum and wavelength

Heisenberg uncertainty principle



The Wavetunction and Its
Interpretation

Topic 1C.1
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Topic 1C

1C.1 The wavefunction and its interpretation

Last time: Classical vs. quantum mechanics

Velocity

/>l.()cari()n

(a)

High

probability

(b)

v

Trajectory

Wavefunction, y

L1

Low probability

Classical mechanics: the location and
velocity of a particle are known precisely at
each pointin time (trajectory), described

by a path or position function.

Quantum mechanics: the particle is better
described by its wave-like character with a
wavefunction y (position not defined) and

a probability density y?.



Topic 1C

1C.1 The wavefunction and its interpretation

Last time: The Schrodinger equation

The Schrodinger equation is used to calculate the wavefunction for any

confined to any region of space, including confined within

atoms and molecules.

HY = EY
Equation not used directly in this class.

You will need to recognize (not know by heart, they would be on the formula

sheet) the form of some of its solutions, but not how these solutions are found.

12



1C.1 The wavefunction and its interpretation

Last time: The particle-in-a-box model

The Schrodinger equation is used to calculate
both the wavefunction ¥ and the

corresponding energy E.

The particle-in-a-box model is used to show
how the Schrodinger equation can be

applied to describe quantum systems.

Simple model system: a single particle of

mass m confined in a one-dimensional

«box» between two impenetrable walls a

distance L apart.
Topic 1C 13



1C.1 The wavefunction and its interpretation

Last time: The time-independent Schrodinger equation

For a particle of mass m moving in one dimension in a region where the potential energy is V(x),

the equation is

h? d*y
Tamdxz VYO =EY
Kinetic Potential Total

energy energy  energy

L J
Y

Can also be written as: Hy
h? d?
T V) = B )

Both notations are acceptable. Using Y without explicitly stating the variable is common in theoretical

discussions, while Y(x) is often used when emphasizing the dependence on position.

Topic 1C 14



Topic 1C

1C.1 The wavefunction and its interpretation

Last time: The mathematical form of the particle in the box

Due to boundary conditions, only wavefunctions with certain wavelengths
can exist in the box. The wavefunction is derived as a solution to the time-

independent Schrédinger equation for the particle in a box, which is given

n

by:
) 1
2 (MTX
o = () sin () !
n=12, 5

For ¥, (x) to satisfy the boundary ¥, (L) = O,n—:x must be an integer
multiple of 7 when x = L, so that the sine function goes to zero. This
only happens if n is a positive integer (1, 2, 3,...), because:
sin(nm) = 0 whenn=1,2,3,... 0

Figure 1C.3
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Topic 1C

1C.1 The wavefunction and its interpretation

Last time: The mathematical form of the particle in the box

n,is a quantum number.

A quantum number:

Is an integer (or sometimes a half-integer, such as 2, see

Topic 1D)
Labels a wavefunction

Specifies a state

16



Objects have well-defined positions and velocities.

A. True for only classical
mechanics

B. True only for quantum
mechanics

True for both

. True for neither

o O

Session ID: 346047



Topic 1C

1C.2 The quantization of energy

Answer: True for only classical mechanics.

In classical mechanics, objects are described as having well-defined
positions and velocities at any given time. You can measure both quantities

simultaneously with high precision.

In quantum mechanics, particles do not have well-defined positions and
velocities simultaneously due to the Heisenberg Uncertainty Principle.
Instead, they are described by a wavefunction that gives probabilities for
finding a particle in various positions and states, leading to inherent

uncertainty.

18



Wave-like behaviors (such as interference patterns) can be
observed for particles.

A. True for only classical a2
mechanics

B. True only for quantum
mechanics

True for both

. True for neither

o O

Session ID: 346047



Topic 1C

1C.2 The quantization of energy

Answer: True for both

* In quantum mechanics, particles such as electrons and photons exhibit wave-
like behaviors, including interference patterns. This is famously

demonstrated in the double-slit experiment, where individual particles can

create an interference pattern when not observed, indicating their wave nature.

* |n classical mechanics, wave-like behaviors can also be observed for
macroscopic systems, such as water waves or sound waves, which also exhibit

interference patterns.

20



Energy of systems is continuous and can have any value.

66%

A. True for only classical
mechanics

B. True only for quantum
mechanics

True for both

True for neither

o O

Session ID: 346047



1C.2 The quantization of energy

Answers: True for only classical mechanics.

In classical mechanics, energy is considered to be continuous and can take
any value. For example, a classical particle can have any amount of kinetic or
potential energy depending on its position and motion. In quantum
mechanics, energy levels are quantized, meaning that particles (like electrons
in an atom) can only occupy specific energy levels. They cannot have arbitrary

values; instead, they can only exist at discrete energy states.

Topic 1C 22



The Quantization of Energy

Topic 1C.2

23



What is the purpose of the particle in a box model in
quantum mechanics? Multiple answers can apply.

60%

A. To illustrate the concept of

quantized energy levels.

B. To demonstrate how boundary

conditions affect wavefunctions.

C. To show that particles can exist

outside of a confined region.

D. To provide a simple framework for
understanding wave-particle

duality.

Session ID: 346047




Topic 1C

1C.2 The quantization of energy

Energies of a particle in a box

The wavefunctions associated with different quantum numbers also have different

energies associated with them. How do we calculate these energies?

If the particle stays in the box, the potential energy is zero:

Eyx = Etotar

Use de Broglie relation (/1 =§):

2

h
E =—1mv2 = (mv)z = (p)z = (_A) — hz
k™02 2m 2m  2m  2mA2

25



Topic 1C

1C.2 The quantization of energy

Energies of a particle in a box

h 2
E =—1mv2 = (mv)z = (p)z = (_A) = h*
k™9 2m 2m ~ 2m  2mA2

Recognize, only whole-number multiples of half-wavelengths can fit into the box:

The wavelengths possible for a particle in a box of length L must meet the condition that 1 = 2L, L,—z L,..

In other words, the allowed wavelengths are

2L
A =_Il ,With n= 1,2,

Insert this expression for 1 into the expression for energy:

P N O i
toamar 2Ly 8ml?
&)

26



Topic 1C

1C.2 The quantization of energy

What does this equation tell you?

I R SR
"_ZmAZ_Z ﬂ,Z_SmL2
m ()

Mass in denominator: energy levels are lower and closer

together for heavy particles than for light ones.

Length in denominator: as the walls become more confining
(L smaller), the energy levels rise and become more widely
spaced. In contrast, as the walls become less confining (L

larger), the levels fall and get closer together.

Energy —>

Figure 1C.4




Topic 1C

1C.2 The quantization of energy

What does this equation tell you?

e n2h?
n T 8mlL2

n can only be integer values > energy is quantized!

Energy quantization stems from the boundary conditions on

the wavefunction.
Particle in a box translates to atoms:

Electrons must also satisfy certain boundary conditions, but

now in three dimensions.

We will revisit spectral lines in hydrogen absorption
spectrum! (TOPIC 1D)

6 4
N
>
2P
[}
a
&5
4 3
3 .
2 ) R
.
B — 3 =
Figure 1C.4 28



Topic 1C

1C.2 The quantization of energy
Energy separation between neighboring levels

(n + 1)2h%  n2h?
Env1 = En =g 12 T gmi2

h?  (@2n+1)h?

_ 2 _ 2
tn+1) n }8mL2 8mlL2

As L or m increases, the separation between neighboring

energy levels decreases.

Macroscopic objects in ordinary-sized containers have
energy levels that are extremely close together:

undetectable quantization.

6 4
N
>
20
[}
a
&5
4 3
3 .
. .
B — 3 =
Figure 1C.4 29



1C.2 The quantization of energy

Quantization of energy and the atomic spectrum of hydrogen

Energy is quantized > this realization is key to understanding the atomic spectrum

of hydrogen (Topic 1A).

Hydrogen atom

1D 3D

Physical walls No physical walls, and electrons are
confined by pull of the nucleus

Energy quantized

Topic 1C 30



1C.2 The quantization of energy

What are these lines?!

Balmer Lyman series
series
o e d 0 o
< o Vot o — a M
Q) ) coen — [@\ S I
SR G Wavelength (nm) — - o

Figure TA.10

Infrared Visible Ultraviolet

A spectral line arises from a transition of an electron between allowed energy levels.

The difference in energy is carried away as a photon.

hv = Eupper — Ejower = AE

This equation is known as the Bohr frequency condition.

Topic 1C 31



1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box

We will estimate the energies of the hydrogen atom.

Estimate: «back of the envelope» calculation

~
/

Treat hydrogen atom as a one-dimensional box of length 150. pm

(the approximate diameter of the atom) with one electron. 4

Energy

Predict energy level separation between the lowest and next

higher energy levels. 2
N AVAVAVAN

If the electron falls from the upper level to the lower level, what

-

would be the wavelength of the radiation emitted as a photon?

Topic 1C 32



Topic 1C

1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box

SOLVE The mass of the electron is found inside the back cover.

From Eq. 12 withn =1,2n + 1 =3,

3h?

E,— E = ——
2T g 12

(s )
>‘4
HE
Z—WF\J\
N

From E2 i El = h'l),

3h* 3h
hy = S, SOV = 5
8m.L 8m.L

From A = c/v,

c _ 8m.cL?

(3h/8m.L?) 3h
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1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box

Now substitute the data:

me c L=150 pm

s \ ls s \

8 X (9.10939 X 107> kg) X (2.998 X 10° m-s~!) X (1.50 X 10~%° m)?
3 X (6.626 X 107> J-s)

h
_8X9.10939 X 107 X 2,998 X 10° X (1.50 X 10™'%)? kg'm-s™"*m’
3 X 6.626 X 10734 kg-m?-s™%s
e ——/
=247 X 10 %m I

A note on good practice: Note once again how the complicated collection of units is treated:
arriving at the correct units for the answer is a sign that you have set up the equation

correctly. As usual, it is good practice to go as far as possible symbolically and then to insert
numerical values at the last possible stage.
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1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box

Evaluate This wavelength corresponds to 24.7 nm. The experimental value for the actual
transition in a hydrogen atom is 122 nm. Although there is a big discrepancy, an atom
does not have the hard boundaries that confine a particle in a box, and is three-
dimensional. The fact that the predicted wavelength has nearly the same order of mag-
nitude as the actual value suggests that a quantum theory of the atom, based on a more

realistic three-dimensional model, should give good agreement.

Balmer

series
L n—=Ho A
<+ O O S
Y 0N —
o O X

Figure TA.10

Infrared Visible

Topic 1C

Wavelength (nm)

Lyman series

121.6
102.6
97.3

Ultraviolet
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1C.2 The quantization of energy - R

; Polymer layer
Antibody ZnS layer
Fluorescence
Nanocrystals
Electrons in nanoscale particles (1-100 nm diameter) Autigen
made of semiconductor materials are quantum

confined and behave like a particle in a box: Quantum | €dse quantum dots with a shell of ZnS and polymer are linked to an
antibody. The antibody binds to specific antigens within the cell.

dots or nanocrystals.

CdSe (cadmium selenide) nanoparticles coated with

shell of ZnS plus polymer, modified with antibodies.
Antigen-specific binding on cells.

Size of quantum dot will change emitted light

wavelength: imaging at multiple wavelengths possible.

Multicolor fluorescence micrograph of Hela cells showing the
location of the cytoskeleton (yellow and green) and the cell nucleus
(purple). (Dr. Gopal Murti/Science Source.)

BOX 1C.1 2 36
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Topic 1C

1C.2 The quantization of energy

Particle in a box: zero-point energy

. . . . . n2h2
Surprising implication of equation: E, =
A particle in a container cannot have zero energy.

The lowest value of nis 1.

2

Lowest energy is E; = (Zero-point energy)

8mL?
What this means: A particle can never be perfectly still when it is confined between
two walls, it must always possess an energy, in this case, at least the kinetic energy

h2
8mlL2’
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1C.2 The quantization of energy

Zero-point energy is consistent with uncertainty principle

The Heisenberg uncertainty principle states that there is a fundamental limit to how precisely
we can simultaneously know a particle’s position and momentum:

1
Ap x Ax 2
« The particle is confined within a box, so its position uncertainty Ax is on the order of the
size of the box, L.
Ax = L

* Due to the Uncertainty Principle, if the particle's position is confined, the momentum p
(and hence its velocity) cannot be zero. There must be some uncertainty in momentum Ap,
meaning the particle has a nonzero minimum momentum.

Ap = h/2L

« This nonzero momentum means the particle always has some kinetic energy, even in the

Tooic 1C ground state, and cannot be perfectly still. This nonzero energy is the zero-point energy.
opic



Why is n = 0 not a valid solution for the particle in a box? Hint:
think of the Born interpretation of the wavefunction.

52%

A. The wavefunction wg(x) would be
zero everywhere, resulting in no
probability of finding the particle
In the box.

B. The wavefunction wg(x) is
undefined for n=0 and cannot be
calculated.

C. The energy levels for n=0 would
be negative, which is not
physically possible.

D. The boundary conditions require
that all guantum numbers must
be non-negative.




1C.2 The quantization of energy

Answer: Why is n = 0 not a valid solution for the particle in a box?

If n =0, the wavefunction y(x) would be:

Yo(x) = \Esin (O—ZX) = ﬁsin(O) =0

the wavefunction ¥,(x) would be zero everywhere inside the box, meaning that there is no
probability of finding the particle anywhere inside the box. This contradicts the Born
interpretation of the wave function.

According to the Born interpretation, the square of the wavefunction’s absolute value, |4 (x)]?
represents the probability density of finding the particle at a given position x within the box.

¢ Ifn=0,then yy(x) = 0 everywhere, which implies that |,(x)|?> everywhere.

* This would mean the probability density is zero at all positions, indicating there is zero
probability of finding the particle anywhere inside the box. Physically, this is nonsensical
because the particle must be somewhere in the box.

Topic 1C
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1C.2 The quantization of energy

The shapes of the wavefunctions

The shapes reveal interesting information.

The two lowest-energy wavefunctions are displayed on the

right, n =1and n = 2.

Density of shading: likelihood of finding a particle (formally:
probability density)

For ; with energy h?/8mlL?: the particle is most likely found at
the center of the box.

For i, with energy h?/2mlL? : the particle is least likely found at
the center of the box, most likely to be found in regions

between the center and the walls. |

RV

The most likely locations of a quantum mechanical particle,
such as an electron, depend on the quantum state it is in. Figure 1C.5

Topic 1C 41



Topic 1C

1C.2 The quantization of energy

Why is this statement relevant for you even if you don’t plan on
studying quantum chemistry again?

The most likely locations of a quantum mechanical particle, such as an electron,

depend on the quantum state it is in.

Organic chemistry
Inorganic chemistry
Physical chemistry

Analytical chemistry

Biochemistry

nmoow p

Environmental chemistry

39%

& & S S S e
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o Q€ &
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1C.2 The quantization of energy

Why is this relevant for you even if you don’t plan on studying quantum
chemistry again?

Organic Chemistry: Quantum mechanical electron locations dictate
bonding, molecular structure, and reactivity in chemical reactions.

Biochemistry: Electron distributions in quantum states help explain enzyme

catalysis, electron transport in metabolic pathways, and drug interactions.

Physical Chemistry: Quantum state electron positions are crucial for
spectroscopy, reaction kinetics, and thermodynamic properties through

quantum models and calculations.

etc.

Topic 1C 43
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Topic 1C

The skills you have mastered are the ability to

O Describe the origin and shapes of the wavefunctions of a particle in a box.

O Calculate the allowed energies of a particle in a box and explain how they depend

on the length of the box and the mass of the particle.
O Explain what is meant by zero-point energy and accounts for its origin

Summary: You now know that the location of a particle is expressed by a
wavefunction, the square of which expresses the probability (as a probability
density) that the particle will be found in each region of space. You also know
that a wavefunction is found by solving the Schrodinger equation and that one
consequence of the wavefunction having to fit into a region of space is that a
particle confined to a region can have only certain discrete energies known as

energy levels.
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The Hydrogen Atom

Topic 1D

46



Overview Chapter 1 (Focus 1: Atoms)

47
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Topic 1D

Topic 1D.1 Energy levels

Topic 1D.2 Atomic orbitals

Topic 1D.3 Quantum numbers, shells, and subshells

Topic 1D.4 The shapes of orbitals

Topic 1D.5 Electron spin

Topic 1D.6 The electronic structure of hydrogen: a summary

WHY DO YOU NEED TO KNOW THIS WHAT DO YOU NEED TO KNOW
MATERIAL? ALREADY?
The hydrogen atom is the simplest + Features of spectrum of atomic
atom of all and is used to discuss hydrogen (Topic 1A)

the structures of all atoms. Concepts of wavefunction and

It is therefore central to many energy level in quantum mechanics

explanations in chemistry. (Topic 1C)

48



Topic 1D

1D The hydrogen atom

Setting the stage

In Topic 1A, we have seen this puzzle

1 1
v=R|l—m—]|n =12,....,.no=n,+1,n, +2,..
<n% n> T

Value of Rydberg constant, R = 3.29 x 10'°Hz
Why such a pattern and why does R have that value?

Example 1C.1 gave clues: lines in spectrum are due to transitions between allowed energy

levels of the atom, the difference in energy is carried awway by a photon of energy hv

Aim of this topic: construct a quantum mechanical model of the hydrogen atom using the
fact that an electron has wave-like properties and is described by a wavefunction, and has

quantized energy levels.

49



Energy Levels

Topic 1D.1
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Topic 1D

1D.1 Energy levels

Setting the stage

Again: an electron in an atom is like a particle in a box in the sense that it is

confined within the atom, not by the walls, but by the electrostatic pull of the

nucleus.
It follows boundary conditions are also applicable for atom.

Solving Schréodinger equation for the hydrogen atom will result in existence of

discrete energy levels.

51



The state of a particle in a 1D box is defined by one quantum number.
How many quantum numbers do you think will be needed to specify the
wavefunction of an electron in a hydrogen atom?

39%

A. 1
B. 2
C.3
D. 4 or more

18%




Topic 1D

1D.1 Energy levels

Allowed energy levels for electron in hydrogen atom

To find allowed energy levels of an electron in a hydrogen atom, you need to solve

appropriate Schrodinger equation. Consider:

1. Motion in three dimensions.

2. Instead of simple walls, the electron experiences a Coulomb potential due to

the nucleus. The Coulomb potential energy of an electron of charge —e at a

distance r from the nucleus of charge +e:

(—e)x(+e) e’

V(r) = —
(r) dmegr degr

o electric constant
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Topic 1D

1D.1 Energy levels

Allowed energy levels for electron in hydrogen atom

Schrodinger managed to solve his equation with this potential
energy:

(—e)x(+e) e?

V(r) = —
) 4megr 4megr

£o: electric constant

He found that the allowed energy levels of an electron in a
hydrogen atom are:

hR
nT T2
R =T ithn =12
- 8h3£g WI n _ ) ) mun

1
—§hR
Balmer
1
_ZhR
>
%‘3 Lyman
=
3
—hR
Figure 1D.1 54



Topic 1D

1D.1 Energy levels

What does this equation tell you?

hR

En = =2

_ mee?t . .
R = ansez withn=1,2, ...

All energies are negative: electron has a lower energy far from the
nucleus, it takes energy to remove an electron from an atom.

There is a quantum number, n, like for the particle in a box. Energy

is quantized, can only have discrete values.

n appears in the denominator: as n increases, the energies of
successive levels increase (become less negative).

As the energies approach zero, the electron is on the point of
escaping from the atom.

Energy —>

—hR

Balmer

Lyman

Figure 1D.1
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1D.1 Energy levels

Relationship to Bohr frequency condition
Bohr frequency condition:
hv = AE

Insert into previous equation. In the case of the hydrogen atom, if the electron falls

from a level with quantum number n, to one with quantum number n,, then:

hR hR 1 1 _
hv=AE=|-—)—|—5|=hR{—= —— ¢ withn, =12,..,n, =n; +1,n; + 2, ...
n; ny n; n;

Compare to previous Rydberg equation:

1 1
v=R (—2 ——2> withn,; =1,2,..,n, =n;+1,n, + 2, ..
ny n;
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Topic 1D

1D.1 Energy levels

Finally, it makes sense

You can now see:

Balmer series, for example, arises from transitions starting

atn, = 3,4,5...and all ending at nq = 2
Lyman series: n, = 2,3,4,5...tony=1
Rydberg constant

mee*

B 8h3ef

=3.29 x 1015 HZz

Imagine Schroédinger calculating this constant!

—§h‘](

Balmer

hR.

A=

Lyman

Energy —>

—hR

Figure 1D.1 57



1D.1 Energy levels

generate an image of erwin schrodinger when he found was able to
calculate the rydberg constant using fundamental constants.

Finally, it makes sense

<
z 0
UD
12,
elo O
P~
~
(
&l :
[}
A
¢ ;
o |
Whimiﬁf

i3 *
5 ol 5, < T
Py .
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Topic 1D

1D.1 Energy levels

Finally, it makes sense

give me more excitement
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1D.1 Energy levels

Generalization to other one-electron ions possible

Schrédinger was able to generalize this equation

hR
T
4
mee ,
R = withn=1,2,...
8h3¢el

to other one-electron ions such as He* and even C>*. For a nucleus with atomic number Z and charge Ze,
the energy levels are:
Z%hR

Ep=—— n=12,..

Note: because Z appears in the numerator, the greater the value of the nuclear charge, the lower the

energy (more negative) of the electron and the more tightly it is bound to the nucleus.

This equation can be used for one-electron ions, for many-electron atoms, see Topic 1E.
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1D.1 Energy levels

Key terms to remember

The integern =1, 2, ... is called the principal quantum number.

Coming soon: more quantum numbers.

The lowest (most negative) energy possible for an electron in a hydrogen atom is obtained when
n =1 and E, is equal to —hR: ground state of the atom.

When the atom absorbs a photon or collides with other particles, it may be excited from the
ground state to a level with a higher value of n.

If collision are very energetic, n might reach infinity, a process called ionization. An electron is
removed from the hydrogen atom.

The minimum ionization energy starting from an electron in the ground state for a hydrogen atom
is equal to hR. (numerical value: 2.18 X 10717 or 13.6 eV).

Any further energy beyond the ionization energy adds kinetic energy to the liberated electron.
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Topic 1D

1D.1 Energy levels

Summary

The energy levels of a hydrogen atom are defined by the principal quantum number,
n=1,2,.. and form a converging ladder, as shown in Figure 1D.1. Spectroscopic lines

arise from transitions between the levels.
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Atomic Orbitals

Topic 1D.2
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1D.2 Atomic orbitals

Wavefunction and atomic orbitals

The wavefunction of an electron in an atom is called an atomic orbital.

Less finite than «orbit» of an electron around the nucleus, to account for wave-like

nature.

Again: the square of a wavefunction tells you the probability density of finding an

electron an each point in space.

In context of hydrogen atom: imagine a cloud centered on the nucleus.

Dense regions: locations where the electron is most likely to be found.
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1D.2 Atomic orbitals

Spherical polar coordinates
The atom is like a sphere (3D), spherical polar
coordinates apply:

ris the radius, the distance from the nucleus

0 (theta) is the colatitude, the angle from the
positive z-axis (the «north pole»), which can be
thought of as playing the role of the

geographical «latitude» (north or south)

¢ (phi) is the azimuth, the angle about the z-

axis, the geographical «longitude» (east or west)

Topic 1D
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Topic 1D

1D.2 Atomic orbitals

Spherical polar coordinates

The below applet allows you to see how the

location of a point changes as you vary r, 8, and ¢

https://mathinsight.org/spherical_coordinates
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Topic 1D

1D.2 Atomic orbitals

Wavefunction and atomic orbitals

Each wavefunction has a value that depends on
these three coordinates and is therefore denoted as
W(r,6,¢). You can also express it as the product of a
function that depends only on r and another function

that depends on the angles 8 and ¢:

Y(r,60,¢p) =R(r) X Y(6, )

R(r): radial wavefunction, expresses how the

wavefunction varies with distance from the nucleus.

Y (0, $): angular wavefunction, expresses how the

wavefunction varies as the angles 6 and ¢ change.
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Topic 1D

1D.2 Atomic orbitals

Expressions for atomic orbitals

Expressions for some atomic orbitals are shown in table on next slide

Looks complicated at first glance, do not worry about knowing these by heart.

Some are not complicated, e.g. the wavefunction corresponding to the ground state of the hydrogen atom (n = 1) is:
1

1\2
Y(r,0,¢)= <—3> e %

Tag

ao: Bohr radius (52.9 pm)

Wavefunction is spherically symmetric: independent of 8 and ¢ and for a given radius, ist value is the same in all
directions.

Wavefunction decays exponentially toward zero as r increases. Probability density is highest close to the nucleus (at
r=0,e%=1)

In contrast to particle in a box: no physical, confining walls for electron in atom, but the pull of nucleus weakens with

distance.
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TABLE 1.2 Hydrogenlike Wavefunctions” (Atomic Orbitals), ¢ = RY

(a) Radial wavefunctions

(b) Angular wavefunctions

n ! Ru(r) ! “mp’! Yi, m, (6, ¢)
7\32 1\2
1 0 2(—) e a0 0 0 (—)
a 47
1 7\3?2 7z 3\12
2 0 L (_> (2 _ r) —Zrl2a, 1 x (— sin cos ¢
2V2 \4 s A
1 Z\32 (7 3\12
1 - (*> ( r) —Zrl2a, y (* sin 6 sin ¢
VA a 47
2 (Z\" 2Zr | 2237 3\"
D0 (B : Y
91v/3 \ 4 ay 9ay 4m
) [ Z\" Z 15 \ 12
. _(_) 5 _ 21\ ~2tsa, 2 xy =) sin? @ sin 24
9 6 a 3d0 16w
4 <Z)3/2 (21,)2 A (15)1/2 ] )
2 el 20 ) e 2rBa yz — ] cos 0 sin 0 sin ¢
811/30 \ 40 4 4m
15\ 12
X () cos 6 sin 0 cos ¢
4
x2 — y? (E) sin® @ cos 2¢
5 \12
2 (E) (3cos’h — 1)

*Note: In each case, ay = 4mey/mce?, or close to 52.9 pm; for hydrogen itself, Z = 1.

*In all cases except 72; = 0, the orbitals are sums and differences of orbitals with specific values of .
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Example from Table 1.2

For example, a 2p,-orbital (n =2,/ =1, «mp» = x) of hydrogen (Z= 1) is

3 1

=

<_1)2§0 e_.%o X %)2 sin(@) cos(¢)

lp(r, 01 ¢) = RZ,l(r)xyl,x (6: (I)) = a,

é1

2
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Summary

The distribution of an electron in an atom is described by a wavefunction known as an

atomic orbital.
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Student questions 1/2

For the zero-point energy in the particle in a box, what happens to the energy at n=1 when the sample is cooled to 0
Kelvin?

At absolute zero (0 K), a quantum system like a particle in a box cannot have zero energy due to the uncertainty principle, which
dictates that particles cannot be at rest. Therefore, even when cooled to 0 K, the particle retains its zero-point energy, which
corresponds to the energy level at n=1. This means that the particle will still possess a minimum kinetic energy, reflecting its
quantum nature, and cannot fall to a lower state (like n=0) since that state is not physically valid in this model.

What does the notation |{|2 (with vertical bars) signify in the context of probability density?
The wavefunction ¢ can be a complex number, represented as ¥ = Re(y) + ilm(y), where Re(y) is the real part and Im(y) is the

imaginary part. The magnitude of the wavefunction, || = \/(Re(l,b))z + (Im(l,[)))z, indicates the "size" of the wavefunction in the

complex plane. To find the probability density of locating the particle, we use ||?, which provides the likelihood of finding the
particle in a specific region of space. Reminder: complex numbers are outside the scope of this class. For our purposes [|? could

also be written as 2 or ¥ (x)? because in our examples, we do not deal with complex numbers.

Are there any energy levels at point zero for the hydrogen atom, given that all energies are negative and approach zero?
There are no energy levels at point zero; while the energy levels approach zero as the electron moves further from the nucleus,

zero energy indicates a free electron would no longer be bound to the atom.
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What's the difference between the wavelength in the sine function of the wavefunction and the wavelength of emitted light from an electron transitioning
to a lower energy level?
In quantum mechanics, the wavelength in the wavefunction, represented by the sine function ¥o(x) = }i sin%x), corresponds to the spatial distribution of the

particle's probability density. This wavelength, 1, can be determined from the condition that only certain wavelengths fit into the "box" of length LLL. Specifically,
for a particle in a box, the relationship is given by:

2L
An ==

where n is the quantum number (an integer representing different energy levels).

On the other hand, the wavelength of the emitted light when an electron transitions from a higher energy state E; to a lower energy state E; is given by the energy
difference between these states, according to Planck's equation:

E=}'I.V=‘—}L

where E is the energy of the emitted photon, h is Planck’s constant, v is the frequency of the emitted light, c is the speed of light, and A is the wavelength of the
emitted photon.

Thus, the wavelength of the emitted light can be calculated using the energy difference:

AE = By — By =%
=k b=
In summary, the wavelength in the wavefunction relates to the spatial characteristics of the quantum state of the electron in the box, while the wavelength of the

emitted light is directly related to the energy transitions of the electron as it moves between discrete energy levels, reflecting the quantized nature of its energy

D states. 7 4



