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Wavetunctions and Energy
Levels

Topic 1C



Topic 1B

Topic 1C.1 The wavefunction and its interpretation
Topic 1C.2 The quantization of energy

WHY DO YOU NEED TO KNOW THIS
MATERIAL?

Whenever you are dealing with
quantum mechanics, you have to
consider the properties of
wavefunctions and the

information they contain.

WHAT DO YOU NEED TO KNOW
ALREADY?

Properties of sine functions (sin x)
Concept of duality

De Broglie relation between

momentum and wavelength

Heisenberg uncertainty principle



The Wavetunction and Its
Interpretation

Topic 1C.1



Topic 1C

1C.1 The wavefunction and its interpretation

Last time: Classical vs. quantum mechanics
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Classical mechanics: the location and
velocity of a particle are known precisely at
each pointin time (trajectory), described

by a path or position function.

Quantum mechanics: the particle is better
described by its wave-like character with a

wavefunction y (position not defined).



Topic 1C

1C.1 The wavefunction and its interpretation

Last time: The Schrodinger equation

The Schrodinger equation is used to calculate the wavefunction for any

confined to any region of space, including confined within

atoms and molecules.

Hy = Ey
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1C.1 The wavefunction and its interpretation

Last time: The particle-in-a-box model

The Schréodinger equation is used to calculate
both the wavefunction ¥ and the

corresponding energy E.

Simple model system: a single particle of
mass m confined in a one-dimensional
«box» between two impenetrable walls a

distance L apart.
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Topic 1C

1C.1 The wavefunction and its interpretation

Last time: The mathematical form of the particle in the box

Due to boundary conditions, only wavefunctions with certain wavelengths

can exist in the box. The general solution for the wavefunction inside the

box is:

For ¥, (x) to satisfy the boundary ¥, (L) = O,n—:x must be an integer

multiple of T when x = L, so that the sine function goes to zero. This onl

happens if n is a positive integer (1, 2, 3,...), because:

sin(nm) = 0 whenn=1,2,3,...

Energy —>

n

Figure 1C.3
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Topic 1C

1C.1 The wavefunction and its interpretation

Last time: The mathematical form of the particle in the box

A quantum number:

Is an integer (or sometimes a half-integer, such as 2, see

Topic 1D)
Labels a wavefunction

Specifies a state
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The Quantization of Energy

Topic 1C.2
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Topic 1C

1C.2 The quantization of energy

Energies of a particle in a box

The wavefunctions associated with different quantum numbers also have different

energies associated with them. How do we calculate these energies?

If the particle stays in the box, the potential energy is zero:

Ex = Erotar
Use de Broglie relation:

2

h
E =—1mv2 = (mv)z = (p)z = (_A) — hz
k™02 2m 2m  2m 2mA2

25



Topic 1C

1C.2 The quantization of energy

Energies of a particle in a box

h 2
E =—1mv2 = (mv)z = (p)z = (_A) = h*
k™9 2m 2m ~ 2m  2mA2

Recognize, only whole-number multiples of half-wavelengths can fit into the box:

The wavelengths possible for a particle in a box of length L must meet the condition that 1 = 2L, L,—z L,..

In other words, the allowed wavelengths are

2L
A =_Il ,With n= 1,2,

Insert this expression for 1 into the expression for energy:

P N O i
toamar 2Ly 8ml?
&)
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Topic 1C

1C.2 The quantization of energy

What does this equation tell you?

I R SR
"_ZmAZ_Z ﬂ,Z_SmL2
m ()

Mass in denominator: energy levels are lower and closer

together for heavy particles than for light ones.

Length in denominator: as the walls become more confining
(L smaller), the energy levels rise and become more widely
spaced. In contrast, as the walls become less confining (L

larger), the levels fall and get closer together.

Energy —>

Figure 1C.4




Topic 1C

1C.2 The quantization of energy

What does this equation tell you?

e n2h?
n T 8mlL2

n can only be integer values > energy is quantized!

Energy quantization stems from the boundary conditions on

the wavefunction.
Particle in a box translates to atoms:

Electrons must also satisfy certain boundary conditions, but

now in three dimensions.

We will revisit spectral lines in hydrogen absorption

spectrum!
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Topic 1C

1C.2 The quantization of energy
Energy separation between neighboring levels

(n + 1)2h%  n2h?
Env1 = En =g 12 T gmi2

h?  (@2n+1)h?

_ 2 _ 2
tn+1) n }8mL2 8mlL2

As L or m increases, the separation between neighboring

energy levels decreases.

Macroscopic objects in ordinary-sized containers have
energy levels that are extremely close together:

undetectable quantization.
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1C.2 The quantization of energy

Quantization of energy and the atomic spectrum of hydrogen

Energy is quantized > this realization is key to understanding the atomic spectrum

of hydrogen (Topic 1A).

Hydrogen atom

1D 3D

Physical walls No physical walls, and electrons are
confined by pull of the nucleus

Energy quantized
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1C.2 The quantization of energy

What are these lines?!

Balmer Lyman series
series
o e d 0 o
< o Vot o — a M
Q) ) coen — [@\ S I
SR G Wavelength (nm) — - o

Figure TA.10

Infrared Visible Ultraviolet

A spectral line arises from a transition of an electron between allowed energy levels.

The difference in energy is carried away as a photon.

hv = Eupper — Ejower = AE

This equation is known as the Bohr frequency condition.
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1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box

We will estimate the energies of the hydrogen atom.

Estimate: «back of the envelope» calculation

~
/

Treat hydrogen atom as a one-dimensional box of length 150. pm

(the approximate diameter of the atom) with one electron. 4

Energy

Predict energy level separation between the lowest and next

higher energy levels. 2
N AVAVAVAN

If the electron falls from the upper level to the lower level, what

-

would be the wavelength of the radiation emitted as a photon?
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Topic 1C

1C.2 The quantization of energy

Example 1C.1: Calculating the energies of a particle in a box
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1C.2 The quantization of energy - R

; Polymer layer
Antlbody 7ZnS layer
Fluorescence
Nanocrystals
Electrons in nanoscale particles (1-100 nm diameter) Autigen

made of semiconductor materials are quantum

confined and behave like a particle in a box: Quantum | €dse quantum dots with a shell of ZnS and polymer are linked to an
antibody. The antibody binds to specific antigens within the ce

dots or nanocrystals.

CdSe nanoparticles coated with shell of ZnS plus

polymer, modified with antibodies.
Antigen-specific binding on cells.

Size of quantum dot will change emitted light

wavelength: imaging at multiple wavelengths possible.

Multicolor fluorescence micrograph of Hela cells showing the
location of the cytoskeleton (yellow and green) and the cell nucleus
(purple). (Dr. Gopal Murti/Science Source.)
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Topic 1C

1C.2 The quantization of energy

Particle in a box: zero-point energy

. . . . . n2h2
Surprising implication of equation: E, =
A particle in a container cannot have zero energy.

The lowest value of nis 1.

2

Lowest energy is E; = (Zero-point energy)

8mL?
What this means: A particle can never be perfectly still when itis confined between
two walls, it must always possess an energy, in this case, at least the kinetic energy

h2
8mlL2’
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1C.2 The quantization of energy

Zero-point energy is consistent with uncertainty principle

The Heisenberg uncertainty principle states that there is a fundamental limit to how precisely
we can simultaneously know a particle’s position and momentum:

1
Ap x Ax 2
« The particle is confined within a box, so its position uncertainty Ax is on the order of the
size of the box, L.
Ax = L

* Due to the Uncertainty Principle, if the particle's position is confined, the momentum p
(and hence its velocity) cannot be zero. There must be some uncertainty in momentum Ap,
meaning the particle has a nonzero minimum momentum.

Ap = h/2L

« This nonzero momentum means the particle always has some kinetic energy, even in the

Tooic 1C ground state, and cannot be perfectly still. This nonzero energy is the zero-point energy.
opic



1C.2 The quantization of energy

The shapes of the wavefunctions

The shapes reveal interesting information.

The two lowest-energy wavefunctions are displayed on the

right,n=1and n = 2.

Density of shading: likelihood of finding a particle (formally:
probability density)

For ; with energy h?/8mlL?: the particle is most likely found at
the center of the box.

For i, with energy h?/2mlL? : the particle is least likely found at
the center of the box, most likely to be found in regions

between the center and the walls. |

RV

The most likely locations of a quantum mechanical particle,

such as an electron, depend on the quantum state it is in. Figure 1C.5
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Topic 1C

1C.2 The quantization of energy

Why is this statement relevant for you even if you don’t plan on
studying quantum chemistry again?

The most likely locations of a quantum mechanical particle, such as an electron,

depend on the quantum state it is in.

Organic chemistry
Inorganic chemistry
Physical chemistry

Analytical chemistry

Biochemistry

nmoow p

Environmental chemistry
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Topic 1B

The skills you have mastered are the ability to

O Describe the origin and shapes of the wavefunctions of a particle in a box.

O Calculate the allowed energies of a particle in a box and explain how they depend

on the length of the box and the mass of the particle.
O Explain what is meant by zero-point energy and accounts for its origin

Summary: You now know that the location of a particle is expressed by a
wavefunction, the square of which expresses the probability (as a probability
density) that the particle will be found in each region of space. You also know
that a wavefunction is found by solving the Schrodinger equation and that one
consequence of the wavefunction having to fit into a region of space is that a
particle confined to a region can have only certain discrete energies known as

energy levels.
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The Hydrogen Atom

Topic 1D
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Overview Chapter 1 (Focus 1: Atoms)
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Topic 1D

Topic 1D.1 Energy levels

Topic 1D.2 Atomic orbitals

Topic 1D.3 Quantum numbers, shells, and subshells

Topic 1D.4 The shapes of orbitals

Topic 1D.5 Electron spin

Topic 1D.6 The electronic structure of hydrogen: a summary

WHY DO YOU NEED TO KNOW THIS WHAT DO YOU NEED TO KNOW
MATERIAL? ALREADY?
The hydrogen atom is the simplest + Features of spectrum of atomic
atom of all and is used to discuss hydrogen (Topic 1A)

the structures of all atoms. Concepts of wavefunction and

It is therefore central to many energy level in quantum mechanics

explanations in chemistry. (Topic 1C)
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Topic 1D

1D The hydrogen atom

Setting the stage

In Topic 1A, we have seen this puzzle

1 1
v=R|l—m—]|n =12,....,.no=n,+1,n, +2,..
<n% n> T

Value of Rydberg constant, R = 3.29 x 10'°Hz
Why such a pattern and why does R have that value?

Example 1C.1 gave clues: lines in spectrum are due to transitions between allowed energy

levels of the atom, the difference in energy is carried awway by a photon of energy hv

Aim of this topic: construct a quantum mechanical model of the hydrogen atom using the
fact that an electron has wave-like properties and is described by a wavefunction, and has

quantized energy levels.
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Energy Levels

Topic 1D.1
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Topic 1D

1D.1 Energy levels

Setting the stage

Again: an electron in an atom is like a particle in a box in the sense that it is

confined within the atom, not by the walls, but by the electrostatic pull of the

nucleus.
It follows boundary conditions are also applicable for atom.

Solving Schréodinger equation for the hydrogen atom will result in existence of

discrete energy levels.
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Topic 1D

1D.1 Energy levels

Allowed energy levels for electron in hydrogen atom

To find allowed energy levels of an electron in a hydrogen atom, you need to solve

appropriate Schrodinger equation. Consider:

1. Motion in three dimensions.

2. Coulomb potential energy of an electron of charge —e at a distance r from the

nucleus of charge +e:

(—e)x(+e) e’

V(r) = —
(r) degr degr

o electric constant
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Topic 1D

1D.1 Energy levels

Allowed energy levels for electron in hydrogn atom

Schrodinger managed to solve his equation with this potential
energy:

(—e)x(+e) e?

V(r) = —
) 4megr 4megr

£o: electric constant

He found that the allowed energy levels of an electron in a
hydrogen atom are:

hR
nT T2
R =T ithn =12
- 8h3£g WI n _ ) ) mun

1
—5hR.
Balmer
1
—3hR
>
%‘3 Lyman
=
25
—hR
Figure 1D.1 57



Topic 1D

1D.1 Energy levels

What does this equation tell you?

hR

En = =2

_ mee?t . .
R = ansez withn=1,2, ...

All energies are negative: electron has a lower energy far from the
nucleus, it takes energy to remove an electron from an atom.

There is a quantum number, n, like for the particle in a box. Energy

is quantized, can only have discrete values.

n appears in the denominator: as n increases, the energies of
successive levels increase (become less negative).

As the energies approach zero, the electron is on the point of
escaping from the atom.

Energy —>

—hR

Balmer

Lyman

Figure 1D.1
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1D.1 Energy levels

Relationship to Bohr frequency condition
Bohr frequency condition:
hv = AE

Insert into previous equation. In case of the hydrogen atom, if the electron falls from a

level with quantum number n, to one with quantum number nq, then:

hR hR 1 1
hV:AE: N B ) :hR o T 5 ng = 1,2, e, Ny :n1+1,n1+2,
n; ny ny n;

Compare to previous Rydberg equation:

1 1
V= R<_2 __2> ny = 1,2, e, Ny = Ny + 1,n1 + 2,
ny n;
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Topic 1D

1D.1 Energy levels

Finally, it makes sense

You can now see:

Balmer series, for example, arises from transitions starting

atn, = 3,4,5...and all ending at nq = 2
Lyman series: n, = 2,3,4,5...tony=1
Rydberg constant

mee*

B 8h3ef

=3.29 x 1015 HZz

Imagine Schroédinger calculating this constant!

—§h‘](

Balmer

hR.

A=

Lyman

Energy —>

—hR

Figure 1D.1 60



1D.1 Energy levels

Generalization to other one-electron ions possible

Schrédinger was able to generalize this equation

hR
T
4
mee ,
R = withn=1,2,...
8h3¢el

to other one-electron ions such as He* and even C>*. For a nucleus with atomic number Z and charge Ze,
the energy levels are:
Z%hR

Ep=—— n=12,..

Note: because Z appears in the numerator, the greater the value of the nuclear charge, the lower the

energy (more negative) of the electron and the more tightly it is bound to the nucleus.

This equation can be used for one-electron ions, for many-electron atoms, see Topic 1E.
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1D.1 Energy levels

The principal quantum number

The integern =1, 2, ... is called the principal quantum number.

Coming soon: more quantum numbers.

The lowest (most negative) energy possible for an electron in a hydrogen atom is obtained when
n =1 and E, is equal to —hR: ground state of the atom.

When the atom absorbs a photon or collides with other particles, it may be excited from the
ground state to a level with a higher value of n.

If collision are very energetic, n might reach infinity, a process called ionization. An electron is
removed from the hydrogen atom.

The minimum ionization energy starting from an electron in the ground state for a hydrogen atom
is equal to hR. (numerical value:2.18 x 10717] or 13.6 eV).

Any further energy beyond the ionization energy adds kinetic energy to the liberated electron.

Topic 1D 65



Topic 1D

1D.1 Energy levels

Summary

The energy levels of a hydrogen atom are defined by the principal quantum number,
n=1,2,.. and form a converging ladder, as shown in Figure 1D.1. Spectroscopic lines

arise from transitions between the levels.
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Atomic Orbitals

Topic 1D.2
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1D.2 Atomic orbitals

Wavefunction and atomic orbitals

The wavefunction of an electron in an atom is called an atomic orbital.

Less finite than «orbit» of an electron around the nucleus, to account for wave-like

nature.

Again: the square of a wavefunction tells you the probability density of finding an

electron an each point in space.

In context of hydrogen atom: imagine a cloud centered on the nucleus.

Dense regions: locations where the electron is most likely to be found.
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1D.2 Atomic orbitals

Spherical polar coordinates
The atom is like a sphere (3D), spherical polar
coordinates apply:

ris the radius, the distance from the nucleus

0 (theta) is the colatitude, the angle from the
positive z-axis (the «north pole»), which can be
thought of as playing the role of the

geographical «latitude»

¢ (phi) is the azimuth, the angle about the z-

axis, the geographical «longituden.

Topic 1D

\
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Topic 1D

1D.2 Atomic orbitals

Wavefunction and atomic orbitals

Each wavefunction has a value that depends on these
three coordinates and is therefore denoted as
W(r,6,¢). You can also express it as the product of a
function that depends only on r and another function

that depends on the angles 8 and ¢:

Y(r,0,p)=R(r) xY(6,¢)

R(r): radial wavefunction, expresses how the

wavefunction varies with distance from the nucleus.

Y (0, $): angular wavefunction, expresses how the

wavefunction varies as the angles 6 and ¢ change.
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Topic 1D

1D.2 Atomic orbitals

Expressions for atomic orbitals

Expressions for some atomic orbitals are shown in Table 1D.1a (see next slide)

Looks complicated at first glance, do not worry about knowing these by heart.

Some are not complicated, e.g. the wavefunction corresponding to the ground state of the hydrogen atom (n = 1) is:
1

1 \2 I
Y(r,0,¢)= <—3> e %

Tag

ao: Bohr radius (52.9 pm)

Wavefunction is spherically symmetric: independent of 8 and ¢ and for a given radius, ist value is the same in all
directions.

Wavefunction decays exponentially toward zero as r increases. Probability density is highest close to the nucleus (at r
=0,e%=1)

In contrast to particle in a box: no physical, confining walls for electron in atom, but the pull of nucleus weakens with

distance.
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Topic 1D

1D.2 Atomic orbitals

TABLE 1.2 Hydrogenlike Wavefunctions” (Atomic Orbitals), ¢ = RY

(a) Radial wavefunctions

(b) Angular wavefunctions

n ! Ru(r) ! “mp’! Yi, m, (6, ¢)
7\32 1\2
1 0 2(—) e a0 0 0 (—)
a 47
1 7\3?2 7z 3\12
2 0 L (_> (2 _ r) —Zrl2a, 1 x (— sin cos ¢
2V2 \4 s A
1 Z\32 (7 3\12
1 - (*> ( r) —Zrl2a, y (* sin 6 sin ¢
VA a 47
2 (Z\" 2Zr | 2237 3\"
D0 (B : Y
91v/3 \ 4 ay 9ay 4m
) [ Z\" Z 15 \ 12
. _(_) 5 _ 21\ ~2tsa, 2 xy =) sin? @ sin 24
9 6 a 3d0 16w
4 <Z)3/2 (21,)2 A (15)1/2 ] )
2 el 20 ) e 2rBa yz — ] cos 0 sin 0 sin ¢
811/30 \ 40 4 4m
15\ 12
X () cos 6 sin 0 cos ¢
4
x2 — y? (E) sin® @ cos 2¢
5 \12
2 (E) (3cos’h — 1)

*Note: In each case, ay = 4mey/mce?, or close to 52.9 pm; for hydrogen itself, Z = 1.

*In all cases except 72; = 0, the orbitals are sums and differences of orbitals with specific values of .
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Topic 1D

1D.2 Atomic orbitals

Example from Table 1D.1

For example, a 2p,-orbital (n =2,/ =1, «mp» = x) of hydrogen (Z= 1) is

3 1

=

<_1)2§0 e_.%o X %)2 sin(@) cos(¢)

lp(r, 01 ¢) = RZ,l(r)xyl,x (6: (I)) = a,

é1

2
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Topic 1D

1D.2 Atomic orbitals

Summary

The distribution of an electron in an atom is described by a wavefunction known as an

atomic orbital.
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