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Housekeeping notes

� Typo slides in Topic 1A, slide #38 (corrected version was uploaded):

� Calculator at exam: non-programmable. If you have any doubts, you can 

post a photo of your calculator in the Ed discussion forum and we will let 

you know if this calculator is okay.



Wavefunctions and Energy 
Levels

Topic 1C



Overview Chapter 1 (Focus 1: Atoms)
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Topic 1C.1 The wavefunction and its interpretation
Topic 1C.2 The quantization of energy

W H Y  D O  Y O U  N E E D  T O  K N O W  T H I S  

M A T E R I A L ?  

� Whenever you are dealing with 

quantum mechanics, you have to 

consider the properties of 

wavefunctions and the 

information they contain.

W H A T  D O  Y O U  N E E D  T O  K N O W  

A L R E A D Y ?

� Properties of sine functions (sin x)

� Concept of duality

� De Broglie relation between 

momentum and wavelength

� Heisenberg uncertainty principle
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Topic 1B

Last week:

Matter has wave-like properties: The de Broglie relation 

If electromagnetic radiation, long thought as a wave, has dual character, could it be that matter, 

which has been though as consisting of particles, also has wave-like properties?

In 1924, Louis de Broglie proposes that all particles should be regarded as having wave-like 

properties.

He suggested, the wavelength associated with a «matter wave» is inversely proportional to the

particle’s mass, m, and speed, v, and that

𝜆 =
ℎ
𝑚𝑣

With mv = p, the linear momentum:

𝜆 =
ℎ
𝑝



Revision from Tuesday: 
True/False: The concept of wave-particle duality asserts that 
particles, such as electrons, can exhibit both wave-like and particle-
like properties.

A. True 
B. False

Session ID: 828509



Revision from Tuesday: 
True/False: Only light displays wave-particle duality; matter 
particles like electrons always behave as particles.

A. True 
B. False

Session ID: 828509



Revision from Tuesday: 
True/False: The photoelectric effect, where electrons are emitted 
from a surface when it's illuminated by light of a particular 
frequency, provided evidence for the particle-like nature of light.

A. True 
B. False

Session ID: 828509



Revision from Tuesday: 
True/False: According to wave-particle duality, an electron in an 
atom is described by an orbit, much like planets orbiting the sun.

A. True 
B. False

Session ID: 828509



Revision from Tuesday: 
True/False: The wavelength associated with a particle is inversely 
proportional to its momentum, as given by the de Broglie 
equation.

A. True 
B. False

Session ID: 828509



Revision from Tuesday: 
True/False: The wave nature of particles is only observable at 
everyday, macroscopic scales and has no significance at the 
quantum level.

A. True 
B. False

Session ID: 828509



Revision from Tuesday: 
True/False: Complementarity is the idea that particles have either 
wave-like or particle-like properties at any given moment, but never 
both at the same time.

A. True 
B. False

Session ID: 828509



Solutions
True: The concept of wave-particle duality asserts that particles, such as electrons, can exhibit both wave-like and particle-like properties. Explanation: This 
foundational idea of quantum mechanics arose from experiments showing that certain phenomena (e.g., interference and diffraction) can only be explained 
if particles also have wave-like properties.

False: Only light displays wave-particle duality; matter particles like electrons always behave as particles. Explanation: Both light (traditionally considered a 
wave) and matter particles (like electrons) exhibit wave-particle duality. This was famously demonstrated with the electron double-slit experiment.

True: The photoelectric effect, where electrons are emitted from a surface when it's illuminated by light of a particular frequency, provided evidence for the 
particle-like nature of light. Explanation: Albert Einstein explained the photoelectric effect by proposing that light can be thought of as discrete packets or 
quanta of energy, later termed photons. This quantized view of light demonstrated its particle-like nature.

False: According to wave-particle duality, an electron in an atom is described by an orbit, much like planets orbiting the sun. Explanation: In quantum 
mechanics, electrons in atoms are described by wavefunctions, not classical orbits. These wavefunctions represent the probability density of finding an 
electron in a particular location.

True: The wavelength associated with a particle is inversely proportional to its momentum, as given by the de Broglie equation. Explanation: Louis de 
Broglie proposed that particles could have wavelengths given by λ = h/p, where h is Planck's constant and p is the momentum of the particle.

False: The wave nature of particles is only observable at everyday, macroscopic scales and has no significance at the quantum level. Explanation: It's the 
opposite. The wave-like properties of particles are most significant and observable at the quantum (microscopic) scale and become negligible at 

macroscopic scales due to the very small wavelengths involved.

True: Complementarity is the idea that particles have either wave-like or particle-like properties at any given moment, but never both at the same time. 
Explanation: This principle was proposed by Niels Bohr and speaks to the idea that the behavior of quantum entities (as waves or particles) is dependent on 

the type of measurement made.
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The Wavefunction and Its 
Interpretation

Topic 1C.1



1C.1 The wavefunction and its interpretation

Setting the stage

� Classical mechanics treats particles as ”point-like” objects: precise paths with 

definite velocities at each point.

� Electrons have wave-like properties: how do you define their path? Electrons 

don’t have a well-defined location.
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1C.1 The wavefunction and its interpretation

The wavefunction, 𝝍
� Precise trajectory of a particle is replaced by the wavefunction, 

𝜓	(the Greek letter psi)

� In 1927 by Erwin Schrödinger

The wavefunction is a mathematical function with values that 

depend on position (and can depend on other variables).

� Or in other words:

The wavefunction is a mathematical tool that contains all the 

information about a particle’s state.

Its values don’t directly tell us anything measurable.

� Waves are described with sine functions (sin x): it can have 

positive, negative, and complex values.

� Note: in more complex quantum mechanics, you will see that 

wavefunctions may be “complex” in the technical sense 

involving 𝑖 = −1. We ignore this possibility here.

Topic 1C

Erwin Schrödinger, now featuring his signature round glasses, 
along with the wavefunction background in the Vienna 
Secessionist style.



1C.1 The wavefunction and its interpretation

Born interpretation of the wave function

� Max Born suggested how a wavefunction should be interpreted 
physically.

� Why? Because the wave function 𝜓	itself does not directly represent a 
physical quantity.

� Born interpretation: The probability of finding the particle in a region 

of space is proportional to the value of 𝜓! in that region.

� 𝝍𝟐 is a probability density, the probability that a particle will be
found in a small region divided by the volume of the region.

� If 𝜓! is large, the particle has a high probability density.

� If 𝜓! is small, the particle has a low probability density.

� To calculate the probability that a particle will be found in a region, 

the probability density in that region is multiplied by the volume of
the region.

Topic 1C

Figure 1C.2



1C.1 The wavefunction and its interpretation

Probability vs. probability density

� Probability: unitless, can have values between 0 

(certainly not there) and 1 (certainly there)

� Probability density: units are 1/volume

Topic 1C



1C.1 The wavefunction and its interpretation

Addition: Units of wavefunction

� The wavefunction 𝜓 or 𝜓(x,t) in quantum mechanics does not have a specific unit by 

itself, but its units depend on the dimensionality of the system. The key is that the 

square of the absolute value of the wave function, 𝜓' 𝑜𝑟 𝜓 𝑥, 𝑡 ', must have units of 

probability density (i.e., the probability per unit volume, length, or area depending on 

the system).

For a 1D system (one-dimensional):

� In one dimension (along a line), 𝜓 𝑥, 𝑡 ' represents the probability density per unit 

length. The units of 𝜓 𝑥, 𝑡 ' must be 1/length (e.g., m−1) so that when integrated over 

a length, the result is a dimensionless probability.

� Therefore, the unit of 𝜓(x,t) in a 1D system is:

𝜓(x,t) = 𝑚()'
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1C.1 The wavefunction and its interpretation

Physical density analogy

� Imagine you have a block of material, like a piece of metal, and you know its density is 10 grams per 
cubic centimeter (g/cm³). This density tells you how much mass is packed into each cubic centimeter 

of the metal.

� Now, to find out how much total mass is in a specific region of the block (let's say a small section of 
the metal), you would multiply the density (10 g/cm³) by the volume of the region (in cubic 

centimeters). This gives you the total mass in that region.

Quantum Probability Density:

� In quantum mechanics, probability density 𝜓! works in a similar way. The probability density tells 
you how likely it is to find a particle in a small region of space—just like the physical density tells you 

how much mass is in a certain volume.

� To find the total probability of finding the particle in a certain region, you multiply the probability 
density 𝜓! by the volume of that region. This gives you the total probability of finding the particle 

in that space.

Topic 1C



1C.1 The wavefunction and its interpretation

Example: Physical density analogy

Physical density: If the density is 10 g/cm³ and you have a 2 cm³ region, the total mass in that region is:

� Mass = Density × Volume = 10 g/cm³ × 2 cm³ = 20 g

Probability density: If the probability density is 0.5 per cubic centimeter and you have a region of 2 
cm³, the total probability of finding the particle in that region is:

� Probability = 𝜓! × Volume = 0.5 per cm³ × 2 cm³ = 1 

� In this case, the particle is very likely to be in that region!

Key Takeaway:

� Just like multiplying physical density by volume gives you the mass in that region, multiplying 
probability density by the volume gives you the probability of finding the particle in that region. 

Both involve spreading a certain amount (mass or probability) over space and calculating how much 
is in a specific part of that space.

Topic 1C



1C.1 The wavefunction and its interpretation

𝝍 is a wave

• The value of 𝜓 can be positive (above the center line)  or negative (below the center

line)

• This results in constructive or destructive interference

• The square of a function is never negative à 𝜓', or the probability density, is never

negative

• Places where 𝜓 has a large positive or large negative value à places where a particle

is likely to be found

• 𝜓 = 0 with 𝜓' = 0: the particle has zero probability density, meaning the particle will not 

be found there

• A location where 𝜓 passes through zero (not just reaches zero) is called a node, a 

particle has zero probability density wherever the wavefunction has nodes
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Topic 1C

1C.1 The wavefunction and its interpretation

Classical vs. quantum mechanics

� Classical mechanics: the location and 

velocity of a particle are known precisely at 

each point in time (trajectory), described 

by a path or position function.

� Quantum mechanics: the particle is better 

described by its wave-like character with a 

wavefunction 𝜓 (position not defined).



1C.1 The wavefunction and its interpretation

The Schrödinger equation

Topic 1C

� The Schrödinger equation is used to calculate the wavefunction for any 

particle confined to any region of space, including electrons confined within 

atoms and molecules.

� Equation not used directly in this class.

� You will need to know the form of some of its solutions, but not how these

solutions are found.



1C.1 The wavefunction and its interpretation

The Schrödinger equation

Topic 1C

� For a particle of mass 𝑚 moving in one dimension in a region where the potential energy is
𝑉 𝑥 , the equation is

−
ℏ!

2𝑚
𝑑!𝜓
𝑑𝑥!

+ 𝑉 𝑥 𝜓 = 𝐸𝜓

Kinetic 
energy

Potential 
energy

Total
energy

*!+
*,!

: this term indicates how sharply the wavefunction is curved: sharply curved wave
function is characteristic of a particle with high kinetic energy.

−
ℏ'

2𝑚
𝑑'𝜓
𝑑𝑥'

+ 𝑉 𝑥 𝜓 = 𝐸𝜓

𝐻𝜓



1C.1 The wavefunction and its interpretation

The Schrödinger equation

Topic 1C

� 𝐻 is called the hamiltonian of the system.

� The hamiltonian is an operator, it «operates on» the wavefunction 𝜓. 

� In terms of 𝐻, the equation takes the deceptively simple form

𝐻𝜓 = 𝐸𝜓

� Because 𝐻 is an operator, you cannot simply divide by 𝜓 from both sides.

� The Schrödinger equation is a «differential equation», an equation that relates the
«derivatives» of a function (in this case the second derivative of 𝜓, 𝑑'𝜓/dx') to the value of a 
function at each point. You will go more deeply into this topic later in your studies.

� The Schrödinger equation is used to calculate both the wavefunction 𝝍 and the

corresponding energy 𝑬.



1C.1 The wavefunction and its interpretation

The particle-in-a-box model

Topic 1C

� The Schrödinger equation is used to calculate both

the wavefunction 𝝍 and the corresponding energy

𝑬.

� Simple model system: a single particle of mass m

confined in a one-dimensional «box» between two

impenetrable walls a distance L apart.

� Physical analog: a bead free to slide along a rigid 

rod lying between two walls a distance L apart.

� Classical mechanics: the bead has the same 

probability of being found on the rod at any point

inside the box, any speed, any kinetic energy



1C.1 The wavefunction and its interpretation

Boundary conditions

Topic 1C

The quantum mechanical solution:

� The particle must be inside the box: boundary conditions

� Boundary conditions are statements about the values a wavefunction must have at 

certain locations.

� A probability density—and therefore a wavefunction—cannot jump abruptly from one

value to another: it varies smoothly and continuously.

� Therefore: because the particle cannot be found outside the walls, its wavefunction

must be zero just inside the walls.

� The boundary conditions for a particle in a box are that its wavefunction must be

zero at each end of the box, at 𝒙 = 𝟎 and 𝒙 = 𝑳.



1C.1 The wavefunction and its interpretation

Wavefunctions vs. guitar strings

Topic 1C

Because the particle acts like a wave with zero amplitude at 

each end of the box

à Only wavefunctions with certain wavelengths can exist in 

the box

à Think of a guitar string: because it is tied down at each 

end, it can support only shapes like the ones shown in Fig. 

1C.3.

à The shapes of the wavefunctions for the particle in the box 

are the same as the displacements of a vibrating string.

Figure 1C.3



1C.1 The wavefunction and its interpretation

Wavefunctions vs. guitar strings

Topic 1C Figure 1C.3Michael Davis, Journal of Chemical Education 2007, 1287.



1C.1 The wavefunction and its interpretation

The mathematical form of the particle in the box

Topic 1C

𝜓- 𝑥 =
2
𝐿

)
'
sin

𝑛𝜋𝑥
𝐿 𝑛 = 1,2, …

� The integer n labels the wavefunctions and is called a ”quantum 
number”.

A quantum number:

� Is an integer (or sometimes a half-integer, such as ½, see Topic 1D)

� Labels a wavefunction

� Specifies a state

� Can sometimes be used to calculate the value of a property of the 

system, e.g. energy.

Figure 1C.3



1C.1 The wavefunction and its interpretation

Summary

Topic 1C

The probability density for a particle at a location is proportional to the square of 

the wavefunction at that point; places where the wavefunction passes through zero 

are called nodes, and the particle will not be found there. A wavefunction is found by 

solving the Schrödinger equation for the particle and recognizing the existence of 

certain boundary conditions.



Student quotes

“BECAUSE I ENJOY UNDERSTANDING HOW THINGS WORK.”

The Schrödinger equation is a fundamental tool in quantum mechanics for 

understanding how things work at the atomic and subatomic levels. It describes 

how the wavefunction of a system evolves over time, offering a way to predict the 

behavior of particles like electrons. The wavefunction itself is a mathematical 

function that contains all the information about a system's state, such as the 

position and momentum of particles, giving scientists a deep understanding of 

how these particles "work" or behave in space and time.



Student quotes

“BECAUSE I HAVE ALWAYS BEEN INTERESTED TO DISCOVER THE MATTER THAT 

SURROUNDS ME SINCE I WAS A LITTLE CHILD..”

“FASCINATING.”

The quantization of energy, one of the key principles derived from the Schrödinger 

equation, is crucial to understanding how matter behaves at the quantum level. Unlike 

classical systems, quantum systems can only exist in discrete energy levels or 

states.This quote connects to the idea that the Schrödinger equation helps us 

discover the hidden aspects of the world that are not visible on the surface, like how 

electrons in an atom can only occupy certain energy levels, revealing the inner 

structure of matter that surrounds us.



Student questions: 1) why do we apply boundary conditions only in the 
x-dimension, why not in the y-dimension? The sine wave moves along x 
and up and down in the y-direction.

Topic 1C

Short answer: In the 1D particle in a box model, boundary conditions are only 

applied in the x-direction because the particle's motion is limited to that direction. 

The y-direction is not relevant in this 1D model, so no boundary conditions are 

needed there.



Student questions: 1) why do we apply boundary conditions only in the 
x-dimension, why not in the y-dimension? The sine wave moves along x 
and up and down in the y-direction.

Topic 1C

Longer answer:

1. It’s important to distinguish between oscillation and dimensionality:

• Movement in the x-direction (propagation): A wave can propagate (move forward) in the x-direction. In this case, the wave is moving along a 

specific path or axis. This describes the direction of the wave's motion.

• Oscillation in the y-direction: In a typical sine wave, the wave oscillates up and down in the y-direction while it moves forward  along the x-

axis. The up and down motion in the y-direction represents the wave’s amplitude and how it changes with respect to its position along the x-

axis.

2. Dimensionality in quantum mechanics:

� When we talk about dimensionality in quantum mechanics, we're referring to where the particle is allowed to exist and move.

• In a 1D particle in a box model, the particle is restricted to one dimension, the x-direction. It can only be found in positions along the x-axis 

between x=0 and x=L. The wave function represents the probability amplitude along this x-axis, so it only depends on the x-coordinate.

• The oscillation of the wave function (which might look like a sine wave) represents the probability  of finding the particle at different points 

along the x-axis. The wave-like shape is a representation of this probability changing, but the particle is still confined to one dimension (the x-

axis).

Continues on next slide



Student questions: 1) why do we apply boundary conditions only in the 
x-dimension, why not in the y-dimension? The sine wave moves along x 
and up and down in the y-direction.

Topic 1C

Longer answer, continued:

3. Why It's One-Dimensional:

� Even though you might picture the wave as oscillating "up and down" visually (in the y-direction), this oscillation is just a representation of the wave’s 

amplitude or probability. The particle itself does not move up and down in the y-direction. It can only move along the x-axis, and its position along that 
axis is described by the wave function.

� So:

• The oscillation (up and down) represents the amplitude or probability of finding the particle in different positions along the x-axis.

• The dimensionality refers to where the particle can physically be found. In this case, the particle is confined to a line in one dimension (the x-direction), not 
a plane or space where it could also move in the y- or z-directions.

4. Analogy:

� Imagine you're walking along a straight path (x-axis), and your altitude (how high or low you are) changes as you walk, like walking up and down hills. You 

are moving forward along the path (x-direction), but your height (y-direction) just describes the ups and downs along your path—it doesn't mean you're 
moving in a second direction. You're still on a one-dimensional path.

� Summary:

� The wave might oscillate up and down in a visual representation, but that oscillation is just describing how the probability changes along the x-direction. 
The particle is confined to moving in one dimension (the x-axis), so it’s a 1D problem. The y-direction in the wave is not a physical dimension where the 

particle moves—it's just a graphical way to represent the wave's amplitude or the probability.



Student questions: 2) Topic 1B, Heisenberg “parallel to x-axis?” 
What does this mean?

Topic 1C

Position (x-axis): Δx represents the uncertainty in where the particle is located along the x-axis (horizontal direction, for example).

Momentum (x-axis): Δpx refers to the uncertainty in the momentum  (or velocity multiplied by mass) in the same direction, specifically along the x-

axis.

Parallel to the x-axis simply means that both the position and momentum are being described along the same directional axis  (the x-axis). 

Momentum is a vector, and here we are considering the component of momentum that lies parallel to (or in line with) the x-axis.

Why This Matters:

In 3D space, a particle can have uncertainties in position and momentum along different axes: the x-axis, the y-axis, and the z-axis.

The uncertainty principle can apply to each direction separately:

For the x-axis: Δx⋅Δpx≥h4π

For the y-axis: Δy⋅Δpy≥h4π

For the z-axis: Δz⋅Δpz≥h4π

Summary:

The phrase "parallel to the x-axis" means that the uncertainty being discussed is specific to the position and momentum  components along the x-

direction (horizontal axis). It is important because momentum is a vector quantity, and the uncertainty principle applies separately to each direction 

(x, y, and z).


